Due Tuesday, November 9, 1pm

Reading: Tue Nov. 2 : differentiability, mean value theorem, Rudin 5.1-11
Thu Nov. 4 : l'Hospital's rule, Taylor's theorem, Rudin 5.12-19

1. Assume that $f: \mathbb{R} \longrightarrow \mathbb{R}$ and that for some $C>0$ and $\alpha>0$ we have for any $x, y \in \mathbb{R}$

$$
|f(x)-f(y)| \leq C|x-y|^{\alpha}
$$

(a) Prove that if $\alpha>1$ then f is constant.
[Hint: What is the derivative of a constant function?]
(b) If $\alpha \leq 1$, is f necessarily differentiable?
2. Problem \# 2 page 114 in Rudin.
3. (a) Problem \# 7 page 114 in Rudin.
(b) Show that for any polynomial $P(x)$

$$
\lim _{x \rightarrow \infty} \frac{P(x)}{e^{x}}=0 \quad \text { and } \quad \lim _{x \rightarrow \infty} \frac{\ln (x)}{P(x)}=0
$$

For the second limit (of course) assume that $P(x)$ is not constant. You may also use your calculus knowledge of derivatives of polynomials, e^{x}, and $\ln (x)$.
4. (a) Show that $\sin (x) \simeq x$ is a good approximation for small x by using Taylor's theorem to obtain

$$
|\sin (x)-x| \leq \frac{1}{6}|x|^{3} \quad \forall x \in \mathbb{R}
$$

(b) Use (a) to calculate the limit for different values of $a \in \mathbb{R}$ and $c>0$ of the function $x^{a} \sin \left(|x|^{-c}\right)$ (from Rudin pg. $115 \# 13$) as $x \rightarrow \infty$.
5. (a) Assume $f:(0,1] \longrightarrow \mathbb{R}$ is differentiable and $\left|f^{\prime}(x)\right| \leq M$ for all $x \in(0,1]$. Define the sequence $a_{n}=f(1 / n)$ and prove that a_{n} converges.
(b) Problem \# 26 page 119 in Rudin.

MIT OpenCourseWare
http://ocw.mit.edu

18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

