18.100B : Fall 2010 : Section R2
 Homework 8

Due Tuesday, November 2, 1pm

Reading: Tue Oct. 26 : continuity and compactness, connectedness, Rudin 4.13-24
Thu Oct. 28 : discontinuities, monotone functions, Rudin 4.25-34

1. (a) Problem 4, page 98 in Rudin
(b) Problem 14, page 100 in Rudin (Hint: Rephrase the problem as $g(x)=0$ and use the fact that $[0,1]$ is connected.)
2. Let $f: \mathbb{R} \rightarrow Y$ be a map to a metric space Y. Show that, for $a \in \mathbb{R}$ and $y \in Y$, the statement $f(a+)=y$ is equivalent to the following:

$$
\forall \epsilon>0 \exists \delta>0 \forall x \in(a, a+\delta): d(f(x), y)<\epsilon
$$

Formulate the analogous statement in the case of the left limit $f(a-)=y$.
3. (a) Let $f: X \rightarrow Y$ be a uniformly continuous function between metric spaces. Show that if $\left(x_{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence in X, then $\left(f\left(x_{n}\right)\right)_{n=1}^{\infty}$ is a Cauchy sequence in Y. Show, therefore, that the function $f(x)=1 / x^{2}$ defined on $(0, \infty)$ is not uniformly continuous.
(b) Problem 6, page 99 in Rudin (You may assume that f is a real valued function on $E \subset$ \mathbb{R}. This result does hold in general also with the metric $d\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=d_{X}\left(x, x^{\prime}\right)+$ $d_{Y}\left(y, y^{\prime}\right)$ on the product $X \times Y$ of two metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$. Hint: One direction is a little subtle. Try e.g. a proof by contradiction to the ϵ, δ-definition of continuity, and use sequential compactness.)
4. Let P denote the space of power series with radius of convergence $R>1$:

$$
P=\left\{\sum_{n=0}^{\infty} a_{n} z^{n} ; a_{n} \in \mathbb{C}, \limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}<1\right\} .
$$

(a) Define $d: P \times P \rightarrow \mathbb{R}$ as follows: If $p(z)=\sum_{n} a_{n} z^{n}$ and $q(z)=\sum_{n} b_{n} z^{n}$, then

$$
d(p, q)=\sum_{n=0}^{\infty}\left|a_{n}-b_{n}\right|
$$

Show that d is a metric on P. [Hint: You can use your knowledge of ℓ^{1}.]
(b) Fix $z_{0} \in \mathbb{C}$ with $\left|z_{0}\right| \leq 1$. Show that the evaluation map $\operatorname{ev}_{z_{0}}(p)=p\left(z_{0}\right)$ for $p \in P$ is a uniformly continuous function $P \rightarrow \mathbb{C}$ (in terms of the metric d from part (a) on P, and the usual Euclidean metric on \mathbb{C}). [Hint: Try first with $z_{0}=1$.]
5. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. For any continuous map $f: X \rightarrow Y$ define a function $\delta_{f}: X \times(0, \infty) \rightarrow(0, \infty) \cup\{\infty\}$ as follows:

$$
\delta_{f}(x, \epsilon)=\sup \left\{\delta>0 \mid \forall t \in X d_{X}(x, t)<\delta \Rightarrow d_{Y}(f(x), f(t))<\epsilon\right\} .
$$

Note that this supremum may be ∞ if the continuity condition holds for all $\delta>0$; e.g. for f constant. In the following, we use the definition of order $<$ and infimum in the extended reals.
(a) Show that the statement " f is continuous at x " is equivalent to " $\delta_{f}(x, \epsilon)>0$ for each $\epsilon>0^{\prime \prime}$.
(b) Show that f is uniformly continuous on $X \operatorname{iff} \inf _{x \in X} \delta_{f}(x, \epsilon)>0$.
(c) Consider the function $f(x)=x^{2}$ defined on the metric space $X=[0, \infty)$. Show that for each $x \in X$

$$
\sup _{t \in X, d_{X}(x, t)<\delta}|f(x)-f(t)|=2 x \delta+\delta^{2} .
$$

(d) Use part (c) to show that $\delta_{f}(x, \epsilon)=\sqrt{x^{2}+\epsilon}-x$. Show that, for fixed $\epsilon>0, \lim _{x \rightarrow \infty}\left[\sqrt{x^{2}+\epsilon}-\right.$ $x]=0$. Conclude that f is not uniformly continuous on X. [Hint: you can use Calculus here, but you needn't. Set $\varphi(x)=\sqrt{x^{2}+\epsilon}-x$. Show that $\varphi(x) \geq 0$, and that $\varphi(x)^{2}+2 x \varphi(x)=\epsilon$ for every x. Hence $0 \leq \varphi(x) \leq \epsilon / 2 x$.]

MIT OpenCourseWare
http://ocw.mit.edu

18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

