18.100B : Fall 2010 : Section R2 Homework 8

Due Tuesday, November 2, 1pm

- **Reading:** Tue Oct.26 : continuity and compactness, connectedness, Rudin 4.13-24 Thu Oct.28 : discontinuities, monotone functions, Rudin 4.25-34
- 1. (a) Problem 4, page 98 in Rudin
 - (b) Problem 14, page 100 in Rudin (Hint: Rephrase the problem as g(x) = 0 and use the fact that [0, 1] is connected.)
- **2.** Let $f : \mathbb{R} \to Y$ be a map to a metric space *Y*. Show that, for $a \in \mathbb{R}$ and $y \in Y$, the statement f(a+) = y is equivalent to the following:

$$\forall \epsilon > 0 \; \exists \delta > 0 \; \forall x \in (a, a + \delta) \; : \; d(f(x), y) < \epsilon.$$

Formulate the analogous statement in the case of the left limit f(a-) = y.

- **3.** (a) Let $f: X \to Y$ be a uniformly continuous function between metric spaces. Show that if $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence in X, then $(f(x_n))_{n=1}^{\infty}$ is a Cauchy sequence in Y. Show, therefore, that the function $f(x) = 1/x^2$ defined on $(0, \infty)$ is not uniformly continuous.
 - (b) Problem 6, page 99 in Rudin (You may assume that f is a real valued function on $E \subset \mathbb{R}$. This result does hold in general also with the metric $d((x, y), (x', y')) = d_X(x, x') + d_Y(y, y')$ on the product $X \times Y$ of two metric spaces (X, d_X) and (Y, d_Y) . Hint: One direction is a little subtle. Try e.g. a proof by contradiction to the ϵ, δ -definition of continuity, and use sequential compactness.)
- **4**. Let *P* denote the space of power series with radius of convergence R > 1:

$$P = \left\{ \sum_{n=0}^{\infty} a_n z^n \, ; \, a_n \in \mathbb{C}, \limsup_{n \to \infty} |a_n|^{1/n} < 1 \right\}.$$

(a) Define $d: P \times P \to \mathbb{R}$ as follows: If $p(z) = \sum_n a_n z^n$ and $q(z) = \sum_n b_n z^n$, then

$$d(p,q) = \sum_{n=0}^{\infty} |a_n - b_n|.$$

Show that *d* is a metric on *P*. [*Hint*: You can use your knowledge of ℓ^1 .]

(b) Fix $z_0 \in \mathbb{C}$ with $|z_0| \leq 1$. Show that the *evaluation map* $ev_{z_0}(p) = p(z_0)$ for $p \in P$ is a *uniformly continuous* function $P \to \mathbb{C}$ (in terms of the metric *d* from part (a) on *P*, and the usual Euclidean metric on \mathbb{C}). [*Hint*: Try first with $z_0 = 1$.]

5. Let (X, d_X) and (Y, d_Y) be metric spaces. For any continuous map $f: X \to Y$ define a function $\delta_f: X \times (0, \infty) \to (0, \infty) \cup \{\infty\}$ as follows:

 $\delta_f(x,\epsilon) = \sup\{\delta > 0 \mid \forall t \in X \ d_X(x,t) < \delta \Rightarrow d_Y(f(x), f(t)) < \epsilon\}.$

Note that this supremum may be ∞ if the continuity condition holds for all $\delta > 0$; e.g. for *f* constant. In the following, we use the definition of order < and infimum in the extended reals.

- (a) Show that the statement "f is continuous at x" is equivalent to " $\delta_f(x, \epsilon) > 0$ for each $\epsilon > 0$ ".
- (b) Show that f is uniformly continuous on X iff $\inf_{x \in X} \delta_f(x, \epsilon) > 0$.
- (c) Consider the function $f(x) = x^2$ defined on the metric space $X = [0, \infty)$. Show that for each $x \in X$

$$\sup_{t \in X, d_X(x,t) < \delta} |f(x) - f(t)| = 2x\delta + \delta^2.$$

(d) Use part (c) to show that $\delta_f(x, \epsilon) = \sqrt{x^2 + \epsilon} - x$. Show that, for fixed $\epsilon > 0$, $\lim_{x \to \infty} [\sqrt{x^2 + \epsilon} - x] = 0$. Conclude that *f* is *not* uniformly continuous on *X*. [*Hint*: you can use Calculus here, but you needn't. Set $\varphi(x) = \sqrt{x^2 + \epsilon} - x$. Show that $\varphi(x) \ge 0$, and that $\varphi(x)^2 + 2x \varphi(x) = \epsilon$ for every *x*. Hence $0 \le \varphi(x) \le \epsilon/2x$.]

MIT OpenCourseWare http://ocw.mit.edu

18.100B Analysis I Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.