18.100B : Fall 2010 : Section R2 Homework 6

Due Tuesday, October 19, 1pm

Reading: Tue Oct.12 : series, Rudin 3.20-37 Thu Oct.14 : series, Rudin 3.38-55.

- 1. (a) Rudin 6 problem (b) on page 78
 - (b) Rudin 6 problem (c) on page 78
 - (c) Prove that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$. (Hint: The partial sums can be written as telescoping sum $(a_1 - a_2) + (a_2 - a_3) + \dots + (a_{n-1} - a_n) = a_1 - a_n$.)
- **2.** Assume that $a_n, b_n > 0$ for all $n \ge n_0$ and $\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$. Prove that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ either both converge or both diverge. (This result is the "limit comparison test".)
- **3.** (a) Let $N \ge 1$ and let a_1, a_2, \ldots, a_N and b_1, b_2, \ldots, b_N be real numbers. Verify that

$$\left(\sum_{i=1}^{N} a_i b_i\right)^2 + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (a_i b_j - a_j b_i)^2 = \left(\sum_{i=1}^{N} a_i^2\right) \left(\sum_{j=1}^{N} b_j^2\right)$$

and conclude the Cauchy-Schwarz inequality

$$\left|\sum_{i=1}^{N} a_i b_i\right| \le \left(\sum_{i=1}^{N} a_i^2\right)^{1/2} \left(\sum_{j=1}^{N} b_j^2\right)^{1/2}$$

Then use the Cauchy-Schwarz inequality inequality to prove the triangle inequality

$$\left(\sum_{i=1}^{N} (a_i + b_i)^2\right)^{1/2} \le \left(\sum_{i=1}^{N} a_i^2\right)^{1/2} + \left(\sum_{j=1}^{N} b_j^2\right)^{1/2}.$$

(Hint: square both sides.)

(b) Let now

$$X = \left\{ a : \mathbb{N} \to \mathbb{R} \mid \sum_{n=1}^{\infty} a(n)^2 \text{ converges} \right\} = \left\{ (a_n)_{n \in \mathbb{N}} \subset \mathbb{R} \mid \sum_{n=1}^{\infty} a_n^2 < \infty \right\}$$

and define a norm and induced metric

$$\|(a_n)_{n\in\mathbb{N}}\|_2 = \left(\sum_{n=1}^{\infty} a_n^2\right)^{1/2}, \qquad d_2((a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}) = \|(a_n - b_n)_{n\in\mathbb{N}}\|_2.$$

Use part a) to show that (X, d_2) is a metric space. (Hint: One way to solve this is to first prove that $(X, \| \cdot \|_2)$ is a normed vector space.)

- **4.** (a) Rudin problem 9(a) and (c) on page 79. (Hint:ratio test)
 - (b) For both power series, also investigate the convergence on the border of the radius of convergence (for |z| = R).

5. Banach fixed-point theorem:

Let (X, d) be a complete metric space. Suppose $f: X \to X$ has the property that, for some number $c \in (0, 1)$,

$$d(f(x), f(y)) \le c \cdot d(x, y)$$
 for all $x, y \in X$.

- (a) Suppose $y_n \in X$ is any convergent sequence, with limit y. Prove that $f(y_n)$ is a convergent sequence, and $f(y_n) \to f(y)$.
- (b) Fix any point $x_0 \in X$, and iteratively define $x_{n+1} = f(x_n)$ for each $n \in \mathbb{N}$. Show that

$$\sum_{j=0}^{\infty} d(x_{j+1}, x_j)$$

is a convergent series. [*Hint*: it is bounded above by a geometric series.]

- (c) Show that the sequence (x_n) of iterates of f starting at x_0 , as above, is a Cauchy sequence. Conclude that it converges to some point $x_{\infty} \in X$. [*Hint*: Let $m, n \in \mathbb{N}$, and suppose $m \ge n$. Then m = n + k for some $k \in \mathbb{N}$. Show that $d(x_m, x_n) \le c^n \cdot d(x_k, x_0)$, and $d(x_k, x_0) \le d(x_k, x_{k-1}) + d(x_{k-1}, x_{k-2}) + \cdots + d(x_1, x_0) \le \sum_{j=0}^{\infty} d(x_{j+1}, x_j)$. Conclude that $d(x_m, x_n) \to 0$ as $m, n \to \infty$.]
- (d) Show that, given any starting point x_0 , the limit x_∞ of the sequence of iterates in (c) is a *fixed-point* of f: i.e. $f(x_\infty) = x_\infty$. [*Hint*: using part (a), compare $d(f(x_\infty), x_\infty)$ to $d(f(x_n), x_n)$.]
- (e) Let x_0, y_0 be any two points in X. Let $x_{n+1} = f(x_n)$ and $y_{n+1} = f(y_n)$ be the sequences of iterates. Show that $d(x_n, y_n) \to 0$ as $n \to \infty$. Conclude that $x_\infty = y_\infty$, and that f has a *unique* fixed point.

MIT OpenCourseWare http://ocw.mit.edu

18.100B Analysis I Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.