18.100B : Fall 2010 : Section R2

Homework 6
Due Tuesday, October 19, 1pm
Reading: Tue Oct. 12 : series, Rudin 3.20-37
Thu Oct. 14 : series, Rudin 3.38-55.

1. (a) Rudin 6 problem (b) on page 78
(b) Rudin 6 problem (c) on page 78
(c) Prove that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1$.
(Hint: The partial sums can be written as telescoping sum $\left(a_{1}-a_{2}\right)+\left(a_{2}-a_{3}\right)+\ldots+$ $\left.\left(a_{n-1}-a_{n}\right)=a_{1}-a_{n}.\right)$
2. Assume that $a_{n}, b_{n}>0$ for all $n \geq n_{0}$ and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L>0$. Prove that $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ either both converge or both diverge. (This result is the "limit comparison test".)
3. (a) Let $N \geq 1$ and let $a_{1}, a_{2}, \ldots, a_{N}$ and $b_{1}, b_{2}, \ldots, b_{N}$ be real numbers. Verify that

$$
\left(\sum_{i=1}^{N} a_{i} b_{i}\right)^{2}+\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N}\left(a_{i} b_{j}-a_{j} b_{i}\right)^{2}=\left(\sum_{i=1}^{N} a_{i}^{2}\right)\left(\sum_{j=1}^{N} b_{j}^{2}\right)
$$

and conclude the Cauchy-Schwarz inequality

$$
\left|\sum_{i=1}^{N} a_{i} b_{i}\right| \leq\left(\sum_{i=1}^{N} a_{i}^{2}\right)^{1 / 2}\left(\sum_{j=1}^{N} b_{j}^{2}\right)^{1 / 2}
$$

Then use the Cauchy-Schwarz inequality inequality to prove the triangle inequality

$$
\left(\sum_{i=1}^{N}\left(a_{i}+b_{i}\right)^{2}\right)^{1 / 2} \leq\left(\sum_{i=1}^{N} a_{i}^{2}\right)^{1 / 2}+\left(\sum_{j=1}^{N} b_{j}^{2}\right)^{1 / 2}
$$

(Hint: square both sides.)
(b) Let now

$$
X=\left\{a: \mathbb{N} \rightarrow \mathbb{R} \mid \sum_{n=1}^{\infty} a(n)^{2} \text { converges }\right\}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{R} \mid \sum_{n=1}^{\infty} a_{n}^{2}<\infty\right\}
$$

and define a norm and induced metric

$$
\left\|\left(a_{n}\right)_{n \in \mathbb{N}}\right\|_{2}=\left(\sum_{n=1}^{\infty} a_{n}^{2}\right)^{1 / 2}, \quad d_{2}\left(\left(a_{n}\right)_{n \in \mathbb{N}},\left(b_{n}\right)_{n \in \mathbb{N}}\right)=\left\|\left(a_{n}-b_{n}\right)_{n \in \mathbb{N}}\right\|_{2}
$$

Use part a) to show that $\left(X, d_{2}\right)$ is a metric space. (Hint: One way to solve this is to first prove that $\left(X,\|\cdot\|_{2}\right)$ is a normed vector space.)
4. (a) Rudin problem 9(a) and (c) on page 79. (Hint:ratio test)
(b) For both power series, also investigate the convergence on the border of the radius of convergence (for $|z|=R$).

5. Banach fixed-point theorem:

Let (X, d) be a complete metric space. Suppose $f: X \rightarrow X$ has the property that, for some number $c \in(0,1)$,

$$
d(f(x), f(y)) \leq c \cdot d(x, y) \quad \text { for all } \quad x, y \in X
$$

(a) Suppose $y_{n} \in X$ is any convergent sequence, with limit y. Prove that $f\left(y_{n}\right)$ is a convergent sequence, and $f\left(y_{n}\right) \rightarrow f(y)$.
(b) Fix any point $x_{0} \in X$, and iteratively define $x_{n+1}=f\left(x_{n}\right)$ for each $n \in \mathbb{N}$. Show that

$$
\sum_{j=0}^{\infty} d\left(x_{j+1}, x_{j}\right)
$$

is a convergent series. [Hint: it is bounded above by a geometric series.]
(c) Show that the sequence $\left(x_{n}\right)$ of iterates of f starting at x_{0}, as above, is a Cauchy sequence. Conclude that it converges to some point $x_{\infty} \in X$. [Hint: Let $m, n \in \mathbb{N}$, and suppose $m \geq n$. Then $m=n+k$ for some $k \in \mathbb{N}$. Show that $d\left(x_{m}, x_{n}\right) \leq c^{n} \cdot d\left(x_{k}, x_{0}\right)$, and $d\left(x_{k}, x_{0}\right) \leq d\left(x_{k}, x_{k-1}\right)+d\left(x_{k-1}, x_{k-2}\right)+\cdots+d\left(x_{1}, x_{0}\right) \leq \sum_{j=0}^{\infty} d\left(x_{j+1}, x_{j}\right)$. Conclude that $d\left(x_{m}, x_{n}\right) \rightarrow 0$ as $m, n \rightarrow \infty$.]
(d) Show that, given any starting point x_{0}, the limit x_{∞} of the sequence of iterates in (c) is a fixed-point of f : i.e. $f\left(x_{\infty}\right)=x_{\infty}$. [Hint: using part (a), compare $d\left(f\left(x_{\infty}\right), x_{\infty}\right)$ to $d\left(f\left(x_{n}\right), x_{n}\right)$.]
(e) Let x_{0}, y_{0} be any two points in X. Let $x_{n+1}=f\left(x_{n}\right)$ and $y_{n+1}=f\left(y_{n}\right)$ be the sequences of iterates. Show that $d\left(x_{n}, y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Conclude that $x_{\infty}=y_{\infty}$, and that f has a unique fixed point.

MIT OpenCourseWare
http://ocw.mit.edu

18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

