18.100B : Fall 2010 : Section R2 Homework 3

Due Tuesday, September 28, 1pm

Reading: Tue Sept.21 : relative topology, compact sets, Rudin 2.28-35 Thu Sept.23 : compact sets, Rudin 2.36-44

1. Let *E* and *F* be two compact subsets of the real numbers \mathbb{R} with the standard (Euclidian) metric d(x, y) = |x - y|. Show that the Cartesian product

 $E \times F = \{(x, y) \mid x \in E \text{ and } y \in F\}$

is a compact subset of \mathbb{R}^2 with the metric $d_2(\vec{u}, \vec{v}) = \|\vec{u} - \vec{v}\|_2$. (Recall that the norm $\|\cdot\|_2$ is defined by $\|(x, y)\|_2 = (x^2 + y^2)^{1/2}$.)

- 2. Problem # 12 page 44 in *Rudin*.
- 3. Problem # 14 page 44 in *Rudin*.
- 4. Problem # 16 page 44 in *Rudin*.
- 5. Problem # 30 page 46 in *Rudin*.
- **6**. (a) Show that, for any $\epsilon > 0$, there is a union of intervals with total length $< \epsilon$ that contains the Cantor set $C = \bigcap_{n \in \mathbb{N}} E_n$ (defined in Rudin 2.44). [*Hint*: $C \subset E_n$, and each of the 2^n intervals in E_n is contained in an open interval of length $(1 + \epsilon)/3^n$].
 - (b) Show that the Cantor set $C \subset \mathbb{R}$ is compact.
 - (**not for credit**) Show that the Cantor set is uncountable either by fixing the proof of Rudin 2.43, or by using another (e.g. diagonal) argument.

MIT OpenCourseWare http://ocw.mit.edu

18.100B Analysis I Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.