18.100B : Fall 2010 : Section R2 Homework 1

Due Tuesday, September 14, 11am

Reading: Thu Sept.9 : ordered sets and fields, Rudin 1.1-31.

- **1**. Suppose that *S* is a set and \leq is a relation on *S* with the following properties:
 - For all $x \in S$, $x \preceq x$.
 - For all $x, y \in S$, if $x \preceq y$ and $y \preceq x$ then x = y.
 - For all $x, y, z \in S$, if $x \preceq y$ and $y \preceq z$, then $x \preceq z$.

Define a new relation \prec on *S* by $x \prec y$ iff $x \preceq y$ and $x \neq y$. Does this define an order conforming to Definition 1.5 in Rudin? If so, prove it; if not, exhibit a counterexample.

- **2**. Exercise 6, p. 22 of Rudin. [Here b > 1 is an element of \mathbb{R} and you may use the 'definition' of \mathbb{R} as ordered field with least upper bound property. Then recall that $y = x^{\frac{1}{n}}$ is defined as solution of $y^n = x, y \ge 0$.]
- **3**. (Exercise 9 p. 22 of Rudin lexicographic order) For complex numbers $z = a + bi \in \mathbb{C}$ and $w = c + di \in \mathbb{C}$ define "z < w" if either a < c or if (a = c and b < d). Prove that this turns \mathbb{C} into an ordered set. Is this an ordered field? Does it have the least-upper-bound property?
- **4**. (a) Prove that the field \mathbb{Q} of rational numbers has the Archimedean property.
 - **(b)** Compare the least upper bound property with the Archimedean property which one is 'stronger'? Why?
- **5**. Review the logic of a proof by induction. (The not always reliable wikipedia gives a good explanation in this case.)
 - (a) Prove that $(1 + 2 + \dots + n)^2 = 1^3 + 2^3 + \dots + n^3$ for each $n \in \mathbb{N}$.
 - (b) Find a proof of the Bernoulli inequality:

 $(1+x)^n \ge 1+nx$ for all $x \in \mathbb{R}, x \ge -1$ and $n \in \mathbb{N}, n \ge 2$.

(not for credit) Show that strict inequality $(1 + x)^n > 1 + nx$ holds unless x = 0.

MIT OpenCourseWare http://ocw.mit.edu

18.100B Analysis I Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.