18.100B : Fall 2010 : Section R2
 Homework 1
 Due Tuesday, September 14, 11am

Reading: Thu Sept. 9 : ordered sets and fields, Rudin 1.1-31.

1. Suppose that S is a set and \preceq is a relation on S with the following properties:

- For all $x \in S, x \preceq x$.
- For all $x, y \in S$, if $x \preceq y$ and $y \preceq x$ then $x=y$.
- For all $x, y, z \in S$, if $x \preceq y$ and $y \preceq z$, then $x \preceq z$.

Define a new relation \prec on S by $x \prec y$ iff $x \preceq y$ and $x \neq y$. Does this define an order conforming to Definition 1.5 in Rudin? If so, prove it; if not, exhibit a counterexample.
2. Exercise 6, p. 22 of Rudin. [Here $b>1$ is an element of \mathbb{R} and you may use the 'definition' of \mathbb{R} as ordered field with least upper bound property. Then recall that $y=x^{\frac{1}{n}}$ is defined as solution of $y^{n}=x, y \geq 0$.]
3. (Exercise 9 p. 22 of Rudin - lexicographic order) For complex numbers $z=a+b i \in \mathbb{C}$ and $w=c+d i \in \mathbb{C}$ define " $z<w$ " if either $a<c$ or if ($a=c$ and $b<d$). Prove that this turns \mathbb{C} into an ordered set. Is this an ordered field? Does it have the least-upper-bound property?
4. (a) Prove that the field \mathbb{Q} of rational numbers has the Archimedean property.
(b) Compare the least upper bound property with the Archimedean property - which one is 'stronger'? Why?
5. Review the logic of a proof by induction. (The - not always reliable - wikipedia gives a good explanation in this case.)
(a) Prove that $(1+2+\cdots+n)^{2}=1^{3}+2^{3}+\cdots+n^{3}$ for each $n \in \mathbb{N}$.
(b) Find a proof of the Bernoulli inequality:

$$
(1+x)^{n} \geq 1+n x \quad \text { for all } x \in \mathbb{R}, x \geq-1 \text { and } n \in \mathbb{N}, n \geq 2
$$

(not for credit) Show that strict inequality $(1+x)^{n}>1+n x$ holds unless $x=0$.

MIT OpenCourseWare
http://ocw.mit.edu

18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

