86

7 Operators

This chapter is an extended example of an analogy. In the last chapter, the analogy was often between higher- and lower-dimensional versions of a problem. Here it is between operators and numbers.

7.1 Derivative operator

Here is a differntial equation for the motion of a damped spring, in a suitable system of units:

$$\frac{d^2x}{dt^2} + 3\frac{dx}{dt} + x = 0,$$

where x is dimensionless position, and t is dimensionless time. Imagine x as the amplitude divided by the initial amplitude; and t as the time multiplied by the frequency (so it is radians of oscillation). The dx/dt term represents the friction, and its plus sign indicates that friction dissipates the system's energy. A useful shorthand for the d/dt is the operator D. It is an operator because it operates on an object – here a function – and returns another object. Using D, the spring's equation becomes

$$D^{2}x(t) + 3Dx(t) + x(t) = 0.$$

The tricky step is replacing d^2x/dt^2 by D^2x , as follows:

$$D^2x = D(Dx) = D\left(\frac{dx}{dt}\right) = \frac{d^2x}{dt^2}.$$

The analogy comes in solving the equation. Pretend that D is a number, and do to it what you would do with numbers. For example, factor the equation. First, factor out the x(t) or x, then factor the polynomial in D:

86

$$(D^{2} + 3D + 1)x = (D + 2)(D + 1)x = 0$$

This equation is satisfied if either (D+1)x = 0 or (D+2)x = 0. The first equation written in normal form, becomes

$$(D+1)x = \frac{dx}{dt} + x = 0,$$

or $x = e^{-t}$ (give or take a constant). The second equation becomes

$$(D+2)x = \frac{dx}{dt} + 2x = 0,$$

or $x = e^{-2t}$. So the equation has two solutions: $x = e^{-t}$ or e^{-2t} .

7.2 Fun with derivatives

The example above introduced D and its square, D^2 , the second derivative. You can do more with the operator D. You can cube it, take its logarithm, its reciprocal, and even its exponential. Let's look at the exponential e^D . It has a power series:

$$e^D = 1 + D + \frac{1}{2}D^2 + \frac{1}{6}D^3 + \cdots$$

That's a new operator. Let's see what it does by letting it operating on a few functions. For example, apply it to x = t:

$$(1 + D + D^2/2 + \cdots)t = t + 1 + 0 = t + 1.$$

And to $x = t^2$:

$$(1 + D + D^2/2 + D^3/6 + \cdots)t^2 = t^2 + 2t + 1 + 0 = (t+1)^2.$$

And to $x = t^3$:

$$(1 + D + D^2/2 + D^3/6 + D^4/24 + \cdots)t^3 = t^3 + 3t^2 + 3t + 1 + 0 = (t+1)^3.$$

It seems like, from these simple functions (extreme cases again), that $e^{D}x(t) = x(t+1)$. You can show that for any power $x = t^{n}$, that

$$e^D t^n = (t+1)^n.$$

Since any function can, pretty much, be written as a power series, and e^{D} is a linear operator, it acts the same on any function, not just on the powers.

87

Operators

So e^D is the successor operator: It turns the function x(t) into the function x(t+1).

Now that we know how to represent the successor operator in terms of derivatives, let's give it a name, S, and use that abstraction in finding sums.

7.3 Summation

Suppose you have a function f(n) and you want to find the sum $\sum f(k)$. Never mind the limits for now. It's a new function of n, so summation, like integration, takes a function and produces another function. It is an operator, σ . Let's figure out how to represent it in terms of familiar operators. To keep it all straight, let's get the limits right. Let's define it this way:

$$F(n) = \left(\sum f\right)(n) = \sum_{-\infty}^{n} f(k).$$

So f(n) goes into the maw of the summation operator and comes out as F(n). Look at SF(n). On the one hand, it is F(n + 1), since that's what S does. On the other hand, S is, by analogy, just a number, so let's swap it inside the definition of F(n):

$$SF(n) = (\sum Sf)(n) = \sum_{-\infty}^{n} f(k+1).$$

The sum on the right is F(n) + f(n+1), so

$$SF(n) - F(n) = f(n+1).$$

Now factor the F(n) out, and replace it by σf :

$$((S-1)\sigma f)(n) = f(n+1).$$

So $(S-1)\sigma = S$, which is an implicit equation for the operator σ in terms of S. Now let's solve it:

$$\sigma = \frac{S}{S-1} = \frac{1}{1-S^{-1}}.$$

Since $S = e^D$, this becomes

$$\sigma = \frac{1}{1 - e^{-D}}.$$

2008-03-06 13:24:47 / rev ebd336097912+

7.4 Euler sum

Again, remember that for our purposes D is just a number, so find the power series of the function on the right:

$$\sigma = D^{-1} + \frac{1}{2} + \frac{1}{12}D - \frac{1}{720}D^3 + \cdots.$$

The coefficients do not have an obvious pattern. But they are the Bernoulli numbers. Let's look at the terms one by one to see what the mean. First is D^{-1} , which is the inverse of D. Since D is the derivative operator, its inverse is the integral operator. So the first approximation to the sum is the integral – what we know from first-year calculus.

The first correction is 1/2. Are we supposed to add 1/2 to the integral, no matter what function we are summing? That interpretation cannot be right. And it isn't. The 1/2 is one piece of an operator sum that is applied to a function. Take it in slow motion:

$$\sigma f(n) = \int^n f(k) \, dk + \frac{1}{2} f(n) + \cdots.$$

So the first correction is one-half of the final term f(n). That is the result we got with this picture from Section 4.6. That picture required approximating the excess as a bunch of triangles, whereas they have a curved edge. The terms after that correct for the curvature.

89

7.4 Euler sum

As an example, let's use this result to improve the estimate for Euler's famous sum

$$\sum_{1}^{\infty} n^{-2}.$$

The first term in the the operator sum is 1, the result of integrating n^{-2} from 1 to ∞ . The second term is 1/2, the result of f(1)/2. The third term is 1/6, the result of D/12 applied to n^{-2} . So:

$$\sum_{1}^{\infty} n^{-2} \approx 1 + \frac{1}{2} + \frac{1}{6} = 1.666\dots$$

Cite as: Sanjoy Mahajan, course materials for 18.098 / 6.099 Street-Fighting Mathematics, IAP 2008. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Operators

The true value is 1.644..., so our approximation is in error by about 1%. The fourth term gives a correction of -1/30. So the four-term approximation is 1.633..., an excellent approximation using only four terms!

7.5 Conclusion

I hope that you've enjoyed this extended application of analogy, and more generally, this rough-and-ready approach to mathematics.

90

90

Downloaded on [DD Month YYYY].

90