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1 Introduction 

When determining whether a function is chaotic under iteration, it is necessary to prove that the 
set of all periodic points is a dense subset of the space on which the function acts. If the function 
is simple enough, it may be possible to explicitly construct a periodic orbit that comes within an 
arbitrary distance of any given point. However, often this is not possible, and so a more general 
approach is needed. 

Sarkovskii’s Theorem provides a means of proving the existence of infinitely many cycles, each 
with different period, provided that we can find a cycle of length k = 2n, n ∈ Z+ . In this paper, we 
will first prove Sarkovskii’s Theorem and then go on to prove its converse. 

2 Sarkovskii’s Theorem 

2.1 Sarkovskii’s Ordering 

Before formally stating Sarkovskii’s Theorem, it is necessary to define Sarkovskii’s Ordering. This 
ordering of the natural numbers begins with all odd numbers, written in increasing order. These 
are followed by 2 times the odds, 22 times the odds, 23 times the odds, and so on. The powers of 
2 come last, in decreasing order. This ordering can be written as follows: 

3, 5, 7, 9, . . . 

3, 2 · 5, 2 · 7, . . . 2 · 
22 3, 22 5, 22 7, . . . · · · 
23 3, 23 5, 23 7, . . . · · · 
. . . 

. . . , 2n , . . . , 23 , 22 , 2, 1 

Definition 1. Given x, y ∈ Z+, if x precedes y in the Sarkovskii Ordering, we write x � y. If x 
follows y in the ordering, we write x � y. 

We could therefore write Sarkovskii’s Ordering as 

3 � 5 � 7 � . . . � 2 · 3 � 2 · 5 � . . . � 22 3 � 22 5 � . . . · · 

�23 3 � 23 5 � . . . � 2n . . . � 23 � 22 � 2 � 1· · 
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2.2 Sarkovskii’s Theorem 

Theorem 1 (Sarkovskii’s Theorem). Suppose f : � ← � is continuous and has a periodic point of 
prime period n. If n � k, then f also has a periodic point of prime period k. 

Proof 

To prove Sarkovskii’s Theorem, we first need to establish a few basic lemmas To prove Sarkovskii’s 
Theorem, we will divide the proof into 7 cases. 

Case 2.1. If f has a point with period n, where n is odd, then f has a point with period k > n, k

odd.


Case 2.2. If f has a point with period n, n odd, then f has a point with period k, k even.


Case 2.3. If f has a point with period n, n even, then f has a point with period 2.


For the proofs of these three cases, see Robert Devaney’s “An Introduction to Chaotic Dynamical 
Systems,” pp. 6365. 

Case 2.4. If f has a point with period n = 2m, then f has a point with period k = 2l , l < m. 

fk/2Proof. Let k = 2l , l < m. Let g = . By assumption, g has a point with period 2m−l+1 . 
Therefore, g has a point with period 2, by Case 3. This point has period k = 2l under f . 

Case 2.5. If f has a point with period n = p 2m , p odd and m ≥ 0, then f has a point with period ·
k = q · 2m , q > p and q odd. 

Proof. Let g = f2m 
. Since f has a point with period p · 2m, that point has period p under g. So 

by Case 1, there is a point with period q under g, for all q odd and q > p. This point has period 
q · 2m under f . 

Case 2.6. If f has a point with period n = p 2m , p odd and m ≥ 0, then f has a point with period ·
k = q · 2l , l > m. 

Proof. Let g = fm . By assumption, g has a point with period p. So by Case 2, g has a point with

period q · 2l−m , l > m. This point has period q · 2l under f .


Case 2.7. If f has a point with period n = p 2m , p odd and m ≥ 0, then f has a point with period
·
k = 2l , l > m.


Proof. By Case 6, f has a point with period 2l−m 2m = 2l .
·

We have thus proven Sarkovskii’s Theorem. 

3 The Converse of Sarkovskii’s Theorem 

Theorem 2. Given n ∈ Z+, there exists a continuous function f : � → � such that given any 
k � n, f does not have a point with period k. 
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3.1 Proof 

Given n ∈ Z+, it suffices to show that there exists a function f that does not have period k, where 
k is the number immediately preceding n in Sarkovskii’s Ordering. 

We will again divide the proof into multiple cases, in each instance constructing a continuous 
function which does not have the period immediately preceding n in the ordering. 

Case 3.1. Given n ∈ Z+ , ∃f : � → � such that f is continuous and has a point with period 2n+ 1 
but no point of period 2n− 1. 

Proof. We will first construct a continuous function f : [1, 2n + 1] → [1, 2n + 1] and then extend 
the domain to include the entire set of reals. 

Let f : [1, 2n + 1] → [1, 2n + 1] be defined by 

f(1) = n + 1 f(2) = 2n + 1 f(3) = 2n f(4) = 2n− 1 . . . f(n) = n + 3 

f(n + 1) = n + 2 f(n + 2) = n f(n + 3) = n− 1 . . . f(2n + 1) = 1 

All of the integers in [1, 2n + 1] are then of period 2n + 1, by construction. Let f be defined 
linearly within any interval [j, j + 1]. 

To show that there are no points with period 2n−1, we will first show that such a point cannot 
be in [1, 2]. We must therefore iterate [1, 2] 2n− 1 times. 

f
[1, 2] 

f 
[n + 1, 2n + 1] → [1, n + 2] →

f f → [n, 2n + 1] → [1, n + 3] 
f f f → [n− 1, 2n + 1] → . . . → [1, 2n] 
f → [2, 2n + 1] 

Since f2n−1([1, 2]) ∩ [1, 2] = 2, and 2 has period 2n+ 1, [1, 2] contains no points of period 2n−1. 
To show that none of the other intervals contain a point of period 2n − 1, we will show that 

all but one other interval is eventually mapped into [1, 2]. The last interval will be dealt with 
seperately. 

Given any interval [j, j + 1] with j < n + 1, f([j, j + 1]) = [k, k + 1] for some k > n + 2. 
Given any interval [j, j + 1] with j > n + 2, f2([j, j + 1]) = [j + 1, j + 2]. 
So there is an iterate f that maps [j, j + 1] into [1, 2], for all j =� n + 1, since eventually there 

is an iterate that maps the interval to [2n, 2n + 1] and the next iterate will be [1, 2]. 
For the interval [n + 1, n + 2], first note that f([n + 1, n + 2]) = [n, n + 2]. Hence, we have two 

cases. The first case is that fk (x) ∈ [n, n+ 1] for some k ∈ Z+ . Then, as shown above, some iterate 
of x lies in [1, 2], so x cannot have period 2n− 1. 

The second case is that the orbit of x is contained entirely in [n + 1, n + 2]. In this interval, 
|f � = 2 > 1, so x must be a fixed point. |

To extend the domain of f to include the entire set of reals, define f � as follows: 

f(x), 1 < x < 2n + 1 
f �(x) = 

x, x < 1 or x > 2n + 1 

All points outside the domain of f are fixed points, so all cycles of period greater than 1 must 
be in the interval [1, 2n + 1]. f � is thus the desired extension of f . 
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Case 3.2. Given n, k ∈ Z+ , ∃f : � → � such that f is continuous and has a point with period 
2k (2n + 1) but no point of period 2k (2n − 1). 

Case 3.3. Given k ∈ Z+ , ∃f : � → � such that f has a point with period 2k , but no point with 
period 2k+1 . 

Case 3.4. Given k ∈ Z+ , ∃f : � → � such that f has a point with period 2k 3, but no point with ·
period 2k−1 n, where n is any odd number. ·

For the proofs of these three cases, see Saber Elaydi’s “On a Converse of Sharkovsky’s Theorem.” 
This completes the proof of the converse to Sarkovskii’s Theorem. 
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