5.6 Nonlinear Flow and Conservation Laws

Nature is nonlinear. The coefficients in the equation depend on the solution u. In place of $u_{t}=c u_{x}$ we will study $u_{t}+u u_{x}=0$ and more generally $u_{t}+f(u)_{x}=0$. These are "conservation laws" and the conserved quantity is the integral of u.

The first part of this book emphasized the balance equation: forces balance and currents balance. For steady flow this was Kirchhoff's Current Law: flow in equals flow out. The net flow was zero. Now the flow is unsteady-the "mass inside" is changing. So a new $\partial / \partial t$ term will enter the conservation law.

There is "flux" through the boundaries. In words, the rate of change of mass inside a region equals that incoming flux. For an interval $[a, b]$, the incoming flux is the difference in fluxes at the endpoints a and b :

$$
\begin{equation*}
\text { Integral form } \quad \frac{d}{d t} \int_{a}^{b} u(x, t) d x=\boldsymbol{f}(\boldsymbol{u}(\boldsymbol{a}, \boldsymbol{t}))-\boldsymbol{f}(\boldsymbol{u}(\boldsymbol{b}, \boldsymbol{t})) . \tag{1}
\end{equation*}
$$

In applications, u can be a density (of cars along a highway). The integral of u gives the mass (number of cars) between a and b. This number changes with time, as cars flow in at point a and out at point b. The flux is density \boldsymbol{u} times velocity \boldsymbol{v}.

The integral form is fundamental. We can get a differential form by allowing b to approach a. Suppose $b-a=\Delta x$. If $u(x, t)$ is a smooth function, its integral over a distance Δx will have leading term $\Delta x u(a, t)$. So if we divide equation (1) by Δx, the limit as Δx approaches zero is $\partial u / \partial t=-\partial f(u) / \partial x$:

$$
\begin{equation*}
\text { Differential form } \quad \frac{\partial u}{\partial t}+\frac{\partial}{\partial x} f(u)=\frac{\partial u}{\partial t}+f^{\prime}(u) \frac{\partial u}{\partial x}=0 \tag{2}
\end{equation*}
$$

When $f(u)=$ density u times velocity $v(u)$, we can solve this single conservation law. For traffic flow, the velocity $v(u)$ can be measured (it will decrease as density increases). In gas dynamics there are also conservation laws for momentum and energy. The velocity v becomes another unknown, along with the pressure p. The Euler equations for gas dynamics in one space dimension include two additional equations:

Conservation of momentum

$$
\begin{equation*}
\frac{\partial}{\partial t}(u v)+\frac{\partial}{\partial x}\left(u v^{2}+p\right)=0 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial}{\partial t}(E)+\frac{\partial}{\partial x}(E v+E p)=0 \tag{4}
\end{equation*}
$$

Systems of conservation laws are more complicated, but our scalar equation (2) already has the possibility of shocks. A shock is a discontinuity in the solution $u(x, t)$, where the differential form breaks down and we need the integral form (1).

The other outstanding example, together with traffic flow, is Burger's equation, for $u=$ velocity. The flux $\boldsymbol{f}(\boldsymbol{u})$ is $\frac{\mathbf{1}}{2} \boldsymbol{u}^{2}$. The "inviscid" form has no $u_{x x}$:

Burger's equation $\quad \frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(\frac{u^{2}}{2}\right)=\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0$.
When both the density and velocity are unknowns, these examples combine into conservation of mass and conservation of momentum. Typically we change density to ρ. For small disturbances of a uniform density ρ_{0}, we could linearize the conservation laws and reach the wave equation (Problem). But the Euler and Navier-Stokes equations are truly nonlinear, and we begin the task of solving them.

We will approach conservation laws (and these examples) in three ways:

1. By following characteristics until trouble arrives: they separate or collide
2. By a special formula ()
3. By finite difference and finite volume methods, which are the practical choice.

Characteristics

The one-way wave equation $u_{t}=c u_{x}$ is solved by $u(x, t)=u(x+c t, 0)$. Every initial value u_{0} is carried along a characteristic line $x+c t=x_{0}$. Those lines are parallel when the velocity c is a constant.

The conservation law $u_{t}=+u u_{x}=0$ will be solved by $u(x, t)=u(x-u t, 0)$. Every initial value $u_{0}=u\left(x_{0}, 0\right)$ is carried along a characteristic line $\boldsymbol{x}-\boldsymbol{u}_{\boldsymbol{0}} \boldsymbol{t}=\boldsymbol{x}_{\mathbf{0}}$. Those lines are not parallel because their slopes depend on the initial value u_{0}.

Notice that the formula $u(x, t)=u(x-u t, 0)$ involves u on both sides. It gives the solution "implicitly." If the initial function is $u(x, 0)=1-x$, for example, the formula must be solved for u :

$$
\begin{equation*}
u=1-(x-u t) \quad \text { gives } \quad(1-t) u=1-x \quad \text { and } \quad u=\frac{1-x}{1-t} . \tag{5}
\end{equation*}
$$

This does solve Burger's equation, since the time derivative $u_{t}=(1-x) /(1-t)^{2}$ is equal to $-u u_{x}$. The characteristic lines (with different slopes) can meet. This is an extreme example, where all characteristics meet at the same point:

$$
\begin{equation*}
x-u_{0} t=x_{0} \quad \text { or } \quad x-\left(1-x_{0}\right) t=x_{0} \quad \text { which goes through } x=1, t=1 \tag{6}
\end{equation*}
$$

You see how the solution $u=(1-x) /(1-t)$ becomes $0 / 0$ at that point $x=1, t=1$. Beyond their meeting point, the characteristics cannot completely decide $u(x, t)$.

A more fundamental example is the Riemann problem, which starts from two constant values $u=A$ and $u=B$. Everything depends on whether $A>B$ or $A<B$. On the left side of Figure 5.13, with $A>B$, the characteristics meet. On the right
side, with $A<B$, the characteristics separate. Both cases present a new (nonlinear) problem, when we don't have a single characteristic that is safely carrying the correct initial value to the point. This Riemann problem has two characteristics through the point, or none:

Shock Characteristics collide (light goes red: speed drops from 60 to 0)
Fan Characteristics separate (light goes green: speed up from 0 to 60)
The problem is how to connect $u=60$ to $u=0$, when the characteristics don't give the answer. A shock will be sharp breaking (drivers only see the car ahead in this model). A fan will be gradual acceleration.
TO DO...

Figure 5.13: A shock when characteristics collide, a fan when they separate.
For the conservation law $u_{t}+f(u)_{x}=0$, the characteristics are $x-f^{\prime}\left(u_{0}\right) t=x_{0}$. That line has the right slope to carry the constant value $u=u_{0}$:

$$
\begin{equation*}
\frac{d}{d t} u\left(x_{0}+S t, t\right)=S \frac{\partial u}{\partial x}+\frac{\partial u}{\partial t}=0 \quad \text { when } \quad S=f^{\prime}(u) \tag{7}
\end{equation*}
$$

The solution until trouble arrives is $u(x, t)=u\left(x-f^{\prime}(u) t, 0\right)$.

Shocks

After trouble arrives, it will be the integral form that guides the choice of the correct solution u. If there is a jump in u (a shock), that integral from tells where the jump must occur. Suppose u has different values u_{L} and u_{R} at points x_{L} and x_{R} on the left and right sides of the shock:

Integral form

$$
\begin{equation*}
\frac{d}{d t} \int_{x_{L}}^{x_{R}} u d x+f\left(u_{R}\right)-f\left(u_{L}\right)=0 . \tag{8}
\end{equation*}
$$

If the position of the shock is $x=X(t)$, we take x_{L} and x_{R} very close to X. The values of $u(x, t)$ inside the integral are close to the constants u_{L} and u_{R} :

$$
\frac{d}{d t}\left[\left(x-x_{L}\right) u_{L}+\left(x_{R}-X\right) u_{R}\right]+f\left(u_{R}\right)-f\left(u_{L}\right) \approx 0 .
$$

This gives the speed $s=d X / d t$ of the shock curve:

$$
\begin{array}{ll}
\text { Jump condition } & s u_{L}-s u_{R}+f\left(u_{R}\right)-f\left(u_{L}\right)=0 \\
\text { shock speed } & =\frac{\boldsymbol{f}\left(\boldsymbol{u}_{R}\right)-\boldsymbol{f}\left(\boldsymbol{u}_{L}\right)}{\boldsymbol{u}_{R}-\boldsymbol{u}_{L}}=\frac{[\boldsymbol{f}]}{[\boldsymbol{u}]} . \tag{9}
\end{array}
$$

For the Riemann problem, the left and right values u_{L} and u_{R} will be constants A and B. The shock speed s is the ratio between the jump $[f]=f(B)-f(A)$ and the jump $[u]=B-A$. Since this ration gives a constant slope, the shock line is straight. For other problems, the characteristics are carrying different values of u into the shock. So the shock speed s is not constant and the shock lines is curved.

The shock gives the solution when characteristics collide. With $f(u)=\frac{1}{2} u^{2}$ in Burger's equation, the shock speed is halfway between u_{L} and u_{R} :

$$
\begin{equation*}
\text { Burger's equation } \quad \text { Shock speed } s=\frac{1}{2} \frac{u_{R}^{2}-u_{L}^{2}}{u_{R}-u_{L}}=\frac{1}{2}\left(u_{R}+u_{L}\right) \text {. } \tag{10}
\end{equation*}
$$

The Riemann problem has $u_{L}=A$ and $u_{R}=B$, and s is their average. Figure 5.14 shows how the integral form of Burger's equation is solved by the right placement of the shock.

Fans
You might expect a similar picture (just flipped) when $A<B$. Wrong. The integral form is still satisfied, but it is also satisfied by a fan. The choice between shock and fan is made by the "entropy condition" that as t increases, characteristics must go into the shock. The wave speed is faster than the shock speed on the left, and slower on the right:

Entropy condition $\quad f^{\prime}(u)>s>f^{\prime}\left(u_{R}\right)$

Since Burger's equation has $f^{\prime}(u)=u$, it only has shocks when u_{L} is larger than u_{R}. In the Riemann problem that means $A>B$. In the opposite case, the smaller value $u_{L}=A$ has to be connected to $u_{R}=B$ by the fan in Figure 5.14:

Fan (or rarefaction)

$$
\begin{equation*}
u=\frac{x}{t} \quad \text { for } \quad A t<x<B t \tag{12}
\end{equation*}
$$

use fig 6.28 p. 592 of IAM (reverse left and right figs)
Figure 5.14: Characteristics collide in a shock and separate in a fan.
Notice especially that in the traffic flow problem, the velocity $v(u)$ decreases as the density u increases. A good model is linear between $v=v_{\text {max }}$ at zero density and $v=0$ at maximum density. Then the flux $f(u)=u v(u)$ is a downward parabola (concave instead of Burger's convex $u^{2} / 2$):

$$
\begin{array}{ll}
\text { Traffic speed } & v(u)=v_{\max }\left(1-\frac{u}{u_{\max }}\right) \quad \text { and } \quad f(u)=v_{\max }\left(u-\frac{u^{2}}{u_{\max }}\right) . \tag{13}\\
\text { and flux }
\end{array}
$$

Typical values for a single lane of traffic show a maximum flux of $f=1600$ vehicles per hour, when the density is $u=80$ vehicles per mile. This maximum flow rate
is attained when the velocity f / u is $v=20$ miles per hour! Small comfort at that speed, to know that other cars are getting somewhere too.

Problems \qquad and \qquad compute the solution when a light goes red (shock travels backward) and when a light goes green (fan moves forward). Please look at the figures, to see how the vehicle trajectories are entirely different form the characteristics.

A driver keeps adjusting the density to stay safely behind the car in front. (Hitting the car would give $u<0$.) We all recognize the frustration of braking and accelerating from a series of shocks and fans. This traffic crawl happens when the green light is too short for the shock to make it through.

A Solution Formula for Burger's Equation

Let me comment on three nonlinear equations. They are useful models, quite special because each one has an exact solution formula:

$$
\begin{array}{ll}
\text { Conservation law } & u_{t}+u u_{x}=0 \\
\text { Burger's with viscosity } & u_{t}+u u_{x}=\nu u_{x x} \\
\text { Korteweg-de Vries } & u_{t}+u u_{x}=-a u_{x x x}
\end{array}
$$

The conservation law can develop shocks. This won't happen in the second equation because the $u_{x x}$ viscosity term prevents it. That term can stay small when the solution is smooth, but it dominates when a wave is about to break. The profile is steep but it stays smooth.

As starting function for the conservation law, I will pick a point source: $u(x, 0)=$ $\delta(x)$. We can guess a solution with a shock, and check the jump condition and entropy condition. Then we find an exact formula when $\nu u_{x x}$ is included, by a neat change of variables that produces $h_{t}=\nu h_{x x}$. When we let $\nu \rightarrow 0$, the limiting formula solves the conservation law - and we can check that the following solution is correct.

Solution with $u(x, 0)=\delta(x)$ When $u(x, 0)$ jumps upward, we expect a fan. When it drops we expect a shock. The delta function is an extreme case (very big jumps up and down, very close together!). So we look for a shock curve $x=X(t)$ immediately in front of a fan!

$$
\begin{equation*}
\text { Expected solution } u(x, t)=\frac{x}{t} \text { for } 0 \leq x \leq X(t) ; \text { otherwise } u=0 \tag{14}
\end{equation*}
$$

The total mass at the start is $\int \delta(x) d x=1$. This never changes, and already that locates the shock position $X(t)$:

$$
\begin{equation*}
\text { Mass at time } t=\int_{0}^{X} \frac{x}{t} d t=\frac{X^{2}}{2 t}=1 \quad \text { so } X(t)=\sqrt{2 t} \tag{15}
\end{equation*}
$$

Does the drop in u, from $X / t=\sqrt{2 t} / t$ to zero, satisfy the jump condition?

$$
\text { Shock speed } s=\frac{d X}{d t}=\frac{\sqrt{2}}{2 \sqrt{t}} \quad \text { equals } \quad \frac{\operatorname{Jump}\left[u^{2} / 2\right]}{\operatorname{Jump}[u]}=\frac{X^{2} / 2 t^{2}}{X / t}=\frac{\sqrt{2 t}}{2 t} \text {. }
$$

The entropy condition $u_{L}>s>u_{R}=0$ is also satisfied, and the solution () looks good. It is good, but because of the delta function we check it another way.

Begin with $u_{t}+u u_{x}=\nu u_{x x}$, and solve that equation exactly. If $u(x)$ is $\partial U / \partial x$, then integrating our equation gives $U_{t}+\frac{1}{2} U_{x}^{2}=\nu U_{x x}$. The initial value $U_{0}(x)$ is now a step function. Then the great change of variables $U=-2 \nu \log h$ produces the heat equation $h_{t}=\nu h_{x x}$ (Problem \qquad). The initial value becomes $h(x, 0)=e^{-U_{0}(x) / 2 \nu}$. Section 5.4 found the solution to the heat equation $u_{t}=u_{x x}$ from any starting function $h(x, 0)$ and we just change t to νt :

$$
\begin{equation*}
U(x, t)=-2 \nu \log h(x, t)=-2 \nu \log \left[\frac{1}{\sqrt{4 \pi \nu t}} \int_{-\infty}^{\infty} e^{-U_{0}(y) / 2 \nu} e^{-(x-y)^{2} / 4 \nu t} d y\right] \tag{16}
\end{equation*}
$$

It doesn't look easy to let $\nu \rightarrow 0$, but it can be done. That exponential has the form $e^{-B(x, y) / 2 \nu}$. This is largest when B is smallest. An asymptotic method called "steepest descent" shows that as $\nu \rightarrow 0$, the bracketed quantity in (16) approaches $c e^{-B-} \min ^{/ 2 \nu}$. Taking its logarithm and multiplying by $-2 \nu,(16)$ becomes $U=B_{\text {min }}$ in the limit:

$$
\begin{equation*}
\lim _{\nu \rightarrow 0} U(x, t)=B_{\min }=\min _{y}\left[U_{0}(y)+\frac{1}{2 t}(x-y)^{2}\right] . \tag{17}
\end{equation*}
$$

This is the solution formula for $U_{t}+\frac{1}{2} U_{x}^{2}=0$. Its derivative $u=U_{x}$ solves the conservation law $u_{t}+u u_{x}=0$. By including the viscosity $\nu u_{x x}$ with $\nu \rightarrow 0$, we are finding the $u(x, t)$ that satisfies the jump condition and the entropy condition.

Example Starting from $u(x, 0)=\delta(x)$, its integral U_{0} is a step function. The minimum of B is either at $y=x$ or at $y=0$. Check each case:

$$
U(t, x)=B_{\min }=\min _{y}\left[\begin{array}{ll}
0 & (y \leq 0) \\
1 & (y>0)
\end{array}+\frac{(x-y)^{2}}{2 t}\right]= \begin{cases}0 & \text { for } x \leq 0 \\
x^{2} / 2 t & \text { for } 0 \leq x \leq \sqrt{2 t} \\
1 & \text { for } x \geq \sqrt{2 t}\end{cases}
$$

The result $u=d U / d x$ is $\mathbf{0}$ or $\boldsymbol{x} / \boldsymbol{t}$ or $\mathbf{0}$. This agrees with our guess in equation ()—a fan rising from 0 and a shock back to 0 at $x=\sqrt{2 t}$.

