MIT OpenCourseWare
http://ocw.mit.edu
18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.085: Matlab Homework \#5

Laplace's equation.

The problem is Laplace's equation on the unit square with boundary conditions $u=y$ on the side $x=1, u=x$ on the side $y=1, w \cdot n=-y$ on the side $x=0, w: n=-x$ on the side $y=0$.

Replace the 2nd derivatives in Laplace's equation by centered second differences. This gives the " 5 -point discrete Laplacian" on a square grid ($\Delta x=$ $\Delta y):$
$[u(x+\Delta x, y)+u(x-\Delta x, y)+u(x, y+\Delta x)+u(x, y-\Delta x)-4 u(x, y)] /(\Delta x)^{2}$
Set $\Delta x=1 / 11$ giving $10 \times 10=100$ interior grid points with 100 unknowns $u(x, y)$. The 100 grid points fall in a square array but you have to make them into a VECTOR with 100 components. I usually number them by rows, $u_{1}=u(\Delta x, \Delta x)$ and $u_{2}=u(\Delta x, 2 \Delta x)$ and next row $u_{11}=u(2 \Delta x, \Delta x)$ and last corner $u_{100}=u(10 \Delta x, 10 \Delta x)$.

At two boundaries we know u. At the left boundary $x=0$ we know $u^{\prime}=-y$. Replace by $[u(\Delta x, y)-u(0, y)] / \Delta x=-y$. This gives $u(0, y)$ in terms of $u(\Delta x, \Delta x)$; Substitute in the 5 -point equation to eliminate $u(0, y)$. Similarly, eliminate $u(x, 0)$ on the boundary $y=0$ where $\partial u / \partial y=-x$.

Set up the whole system as $K u=f$ where K is 100×100. Is K symmetric? Is K positive definite?? (Let MATLAB decide.) Print out $\operatorname{diag}(K)$. IT SHOULD NOT BE ALL 4's.
K is banded around the main diagonal. What is the bandwidth so $K(i, j)=0$ if abs $(i-j)>w$? What are the largest and smallest eigenvalues of K ? Use the command eig (K).

Print out v, the first column or row of K inverse. This gives the value of $U(\Delta x, \Delta x)$ at the lower left corner from the right side f. What is the ratio of the first component $v(1,1)$ to the last component $v(10,10)$?

Bonus: Let Matlab solve $K u=0$ and plot $u(x, y)$ (Remember, $u(x, y)$ is a 2D surface). Matlab also has a plotting command called QUIVER which plots velocity fields. If $u(x, y)$ describes potential flow, there is a velocity field associated with u given by $v=\nabla u$. Plot this velocity field.

