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CHAPTER 4 

FOURIER SERIES AND INTEGRALS


4.1 FOURIER SERIES FOR PERIODIC FUNCTIONS 

This section explains three Fourier series: sines, cosines, and exponentials eikx . 
Square waves (1 or 0 or −1) are great examples, with delta functions in the derivative. 
We look at a spike, a step function, and a ramp—and smoother functions too. 

Start with sin x. It  has  period  2π since sin(x + 2π) =  sin  x. It is an odd function 
since sin(−x) =  − sin x, and it vanishes at x = 0  and  x = π. Every function sin nx 
has those three properties, and Fourier looked at infinite combinations of the sines: 

Fourier sine series S(x) =  b1 sin x + b2 sin 2x + b3 sin 3x + · · · = 
∞∑ 

n=1 

bn sin nx (1) 

If the numbers b1, b2, . . .  drop off quickly enough (we are foreshadowing the im
portance of the decay rate) then the sum S(x) will inherit all three properties: 

Periodic S(x + 2π) =  S(x) Odd S(−x) =  −S(x) S(0) = S(π) = 0  

200 years ago, Fourier startled the mathematicians in France by suggesting that any 
function S(x) with those properties could be expressed as an infinite series of sines. 
This idea started an enormous development of Fourier series. Our first step is to 
compute from S(x) the  number  bk that multiplies sin kx. 

Suppose S(x) =  bn sin nx. Multiply both sides by sin kx. Integrate from 0 to π: ∫ π ∫ π ∫ π 
S(x) sin  kx dx = b1 sin x sin kx dx + · · ·+ bk sin kx sin kx dx + · · ·  (2) 

0 0 0 

On the right side, all integrals are zero except the highlighted one with n = k. 
This property of “orthogonality” will dominate the whole chapter. The sines make 
90◦ angles in function space, when their inner products are integrals from 0 to π: 

Orthogonality 
∫ π 

0 
sin nx sin kx dx = 0  if  n �= k .  (3) 
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∫ [ ]π 
Zero comes quickly if we integrate cos mx dx = sin 

m
mx 

0 
= 0  − 0. So we use this: 

1 1 
Product of sines sin nx sin kx = cos(n − k)x − cos(n + k)x .  (4)

2 2 
Integrating cos mx with m = n − k and m = n + k proves orthogonality of the sines. 

The exception is when n = k. Then we are integrating (sin kx)2 = 1
2 − 1

2 cos 2kx: ∫ π ∫ π ∫ π1 1 π 
sin kx sin kx dx = dx − cos 2kx dx = . (5)

2 2 2 

The highlighted term in equation (2) is bkπ/2. Multiply both sides of (2) by 2/π: 

0 0 0 

Sine coefficients 
S(−x) =  −S(x) 

bk = 
2 
π 

∫ π 

0 
S(x) sin  kx dx = 

1 
π 

∫ π 

−π 
S(x) sin  kx dx. (6) 

Notice that S(x) sin  kx is even (equal integrals from −π to 0 and from 0 to π). 

I will go immediately to the most important example of a Fourier sine series. S(x) 
is an odd square wave with SW (x) = 1  for 0  < x < π. It is drawn in Figure 4.1 as 
an  odd function (with period 2π) that vanishes  at  x = 0  and  x = π. 

SW (x) = 1  

� x −π 0 π 2π 

Figure 4.1: The odd square wave with SW (x + 2π) =  SW (x) =  {1 or  0 or  −1}. 

Example 1 Find the Fourier sine coefficients bk of the square wave SW (x). 

Solution For k = 1, 2, . . .  use the first formula (6) with S(x) = 1  between 0 and π: ∫ π [ ]π { } 
2 2 − cos kx 2 2 0 2 0 2 0 

bk = sin kx dx = = , , , , , , . . .  (7)
π 0 π k 0 π 1 2 3 4 5 6

The even-numbered coefficients b2k are all zero because cos 2kπ = cos 0 = 1. The 
odd-numbered coefficients bk = 4/πk decrease at the rate 1/k. We will see that same 
1/k decay rate for all functions formed from smooth pieces and jumps. 

Put those coefficients 4/πk and zero into the Fourier sine series for SW (x): 

4 sin x sin 3x sin 5x sin 7x 
Square wave SW (x) = + + + + · · ·  (8)

π 1 3 5 7 

Figure 4.2 graphs this sum after one term, then two terms, and then five terms. You 
can see the all-important Gibbs phenomenon appearing as these “partial sums” 
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include more terms. Away from the jumps, we safely approach SW (x) =  1  or  −1. 
At x = π/2, the series gives a beautiful alternating formula for the number π: 

4 1 1 1 1 1 1 1 1 
1 =  − + − + · · ·  so that π = 4  − + − + · · ·  . (9)

π 1 3 5 7 1 3 5 7 

The Gibbs phenomenon is the overshoot that moves closer and closer to the jumps. 
Its height approaches 1.18 . . .  and it does not decrease with more terms of the series! 
Overshoot is the one greatest obstacle to calculation of all discontinuous functions 
(like shock waves in fluid flow). We try hard to avoid Gibbs but sometimes we can’t. 

4 sin x sin 3x 4 sin x sin 9x 
Solid curve + 5 terms:  + · · ·+ 

π 1 3 π 1 9 

x x−π π 

Dashed 
4 
π 

sin x 
1 

overshoot−→ 
SW = 1  

π 
2 

∑NFigure 4.2: Gibbs phenomenon: Partial sums 1 bn sin nx overshoot near jumps. 

Fourier Coefficients are Best 

Let me look again at the first term b1 sin x = (4/π) sin  x.  This is the  closest possible 
approximation to the square wave SW , by any multiple of sin x (closest in the least 
squares sense). To see this optimal property of the Fourier coefficients, minimize the 

The integral of sin2 x is π/2. So the derivative is zero when b1 = (2/π) S(x) sin  x dx. 

error over all b1: ∫ π ∫ π 

The error is (SW−b1 sin x)2 dx The b1 derivative is −2 (SW−b1 sin x) sin  x dx.  
0 0 ∫ π 

0 
This is exactly equation (6) for the Fourier coefficient. 

Each bk sin kx is as close as possible to SW (x). We can find the coefficients bk 

one at a time, because the sines are orthogonal. The square wave has b2 = 0 because 
all other multiples of sin 2x increase the error. Term by term, we are “projecting the 
function onto each axis sin kx.” 

Fourier Cosine Series 

The cosine series applies to even functions with C(−x) =  C(x): 

∞
Cosine series C(x) =  a0 + a1 cos x + a2 cos 2x + · · · = a0 + an cos nx. (10) 

n=1 
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Every cosine has period 2π. Figure 4.3 shows two even functions, the repeating 
ramp RR(x) and  the  up-down train UD(x) of delta functions. That sawtooth 
ramp RR is the integral of the square wave. The delta functions in UD  give the 
derivative of the square wave. (For sines, the integral and derivative are cosines.) 
RR and UD  will be valuable examples, one smoother than SW , one less smooth. 

First we find formulas for the cosine coefficients a0 and ak. The constant term a0 

is the average value of the function C(x): ∫ π ∫ π1 1 
a0 = Average a0 = C(x) dx = C(x) dx. (11)

π 0 2π −π 

I just integrated every term in the cosine series (10) from 0 to π. On  the  right  side,  
the integral of a0 is a0π (divide both sides by π). All other integrals are zero: ∫ π [ ]π

sin nx 
cos nx dx = = 0  − 0 = 0. (12) 

0 n 0 

In words, the constant function 1 is orthogonal to cos nx over the interval [0, π]. 

The other cosine coefficients ak come from the orthogonality of cosines. As  with  
sines, we multiply both sides of (10) by cos kx and integrate from 0 to π: ∫ π ∫ π ∫ π ∫ π 

C(x) cos  kx dx = a0 cos kx dx+ a1 cos x cos kx dx+··+ ak(cos kx)2 dx+·· 
0 0 0 0 

You know what is coming. On the right side, only the highlighted term can be 
nonzero. Problem 4.1.1 proves this by an identity for cos nx cos kx—now (4) has a 
plus sign. The bold nonzero term is akπ/2 and we multiply both sides by 2/π: 

Cosine coefficients 
C(−x) =  C(x) 

ak = 
2 
π 

∫ π 

0 
C(x) cos  kx dx = 

1 
π 

∫ π 

−π 
C(x) cos  kx dx . (13) 

Again the integral over a full period from −π to π (also 0 to 2π) is just doubled.


� x −π 0 π 2π 

RR(x)=  |x| 

Repeating Ramp RR(x) 
Integral of Square Wave 

� 

� 

� 

� 

� 

x −π 0 π 2π 

−2δ(x + π) 

2δ(x) 

−2δ(x − π) 

2δ(x − 2π) 

Up-down UD(x) 

Figure 4.3: The repeating ramp RR and the up-down UD  (periodic spikes) are even.

The derivative of RR is the odd square wave SW . The derivative of SW is UD.
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Example 2 Find the cosine coefficients of the ramp RR(x) and the up-down UD(x). 

Solution The simplest way is to start with the sine series for the square wave: 

4 sin x sin 3x sin 5x sin 7x 
SW (x) =  + + + + · · ·  . 

1 3 5 7 

Take the derivative of every term to produce cosines in the up-down delta function: 

Up-down series UD(x) =  [cos x + cos  3x + cos  5x + cos  7x + · · · ] . (14)
π 

Those coefficients don’t decay at all. The terms in the series don’t approach zero, so 
officially the series cannot converge. Nevertheless it is somehow correct and important. 
Unofficially this sum of cosines has all 1’s at x = 0  and all −1’s at x = π. Then  +∞ 
and −∞ are consistent with 2δ(x) and −2δ(x − π). The true way to recognize δ(x) is 
by the test δ(x)f(x) dx = f(0) and Example 3 will do this. 

For the repeating ramp, we integrate the square wave series for SW (x) and add the 
average ramp height a0 = π/2, halfway from 0 to π: 

π π cos x cos 3x cos 5x cos 7x 
Ramp series RR(x) = 

12 32 52 72− + + + + · · ·  . (15)
2 4 

The constant of integration is a0. Those coefficients ak drop off like 1/k2. They  could  be  
computed directly from formula (13) using x cos kx dx, but this requires an integration 
by parts (or a table of integrals or an appeal to Mathematica or Maple). It was much 
easier to integrate every sine separately in SW (x), which makes clear the crucial point: 
Each “degree of smoothness” in the function is reflected in a faster decay rate of its 
Fourier coefficients ak and bk. 

No decay Delta functions (with spikes) 
1/k decay Step functions (with jumps) 
1/k2 decay Ramp functions (with corners) 
1/k4 decay Spline functions (jumps in f ′′′) 
rk decay with r <  1  Analytic  functions like 1/(2 − cos x) 

Each integration divides the kth coefficient by k. So the decay rate has an extra 
1/k. The “Riemann-Lebesgue lemma” says that ak and bk approach zero for any 
continuous function (in fact whenever |f(x)|dx is finite). Analytic functions achieve 
a new level of smoothness—they can be differentiated forever. Their Fourier series 
and Taylor series in Chapter 5 converge exponentially fast. 

The poles of 1/(2 − cos x) will be complex solutions of cos x = 2. Its Fourier series 
converges quickly because rk decays faster than any power 1/kp. Analytic functions 
are ideal for computations—the Gibbs phenomenon will never appear. 

Now we go back to δ(x) for what could be the most important example of all. 

π 

4 
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Example 3 Find the (cosine) coefficients of the delta function δ(x), made  2π-periodic. 

Solution The spike occurs at the start of the interval [0, π] so safer to integrate from 
−π to π. We  find  a0 = 1/2π and the other ak = 1/π (cosines because δ(x) is even): ∫ π ∫ π1 1 1 1 
Average a0 = δ(x) dx = Cosines ak = δ(x) cos  kx dx = 

2π −π 2π π −π π 

Then the series for the delta function has all cosines in equal amounts:


Delta function δ(x) =  
1 
2π 

+ 
1 
π 

[cos x + cos  2x + cos  3x + · · · ] . (16) 

Again this series cannot truly converge (its terms don’t approach zero). But we can graph 
the sum after cos 5x and after cos 10x. Figure 4.4 shows how these “partial sums” are 
doing their best to approach δ(x). They oscillate faster and faster away from x = 0. 

Actually there is a neat formula for the partial sum δN (x) that stops at cos Nx. Start  
by writing each term 2 cos  θ as eiθ + e−iθ: 

1 1 [ ] 
δN = [1 + 2 cos x + · · ·+ 2  cos  Nx] =  1 +  e ix + e −ix + · · · + e iNx + e −iNx . 

2π 2π 

This is a geometric progression that starts from e−iNx and ends at eiNx. We  have  powers  
of the same factor eix . The sum of a geometric series is known: 

1

2

1

2
1i(N+ )x − e−i(N+ )x 1 sin(N + )x
1
Partial sum
 e
 2δN (x) =  (17)
=


eix/2 − e−ix/2 2π sin 1 x
. 

2
up to cos Nx 
 2π


This is the function graphed in Figure 4.4. We claim that for any N the area underneath 
δN (x) is 1. (Each cosine integrated from −π to π gives zero. The integral of 1/2π is 
1.) The central “lobe” in the graph ends when sin(N + 1

2 )x comes down to zero, and 
that happens when (N + 

2
1 )x = ±π. I think the area under that lobe (marked by bullets) 

approaches the same number 1.18 . . .  that appears in the Gibbs phenomenon. 

In what way does δN (x) approach δ(x)? The  terms  cos nx in the series jump around 
at each point x �

2
1 
π [1 − 2 + 2  − 2 +  · · · ] and= 0, not approaching zero. At x = π we see 

the sum is 1/2π or −1/2π. The bumps in the partial sums don’t get smaller than 1/2π. 
The right test for the delta function δ(x) is to multiply by a smooth f(x) =  ak cos kx 
and integrate, because we only know δ(x) from its integrals δ(x)f(x) dx = f(0): 

∫ πWeak convergence 
δN(x)f (x) dx = a0 + · · · + aN → f (0) . (18)

of δN (x) to δ(x) 
−π 

In this integrated sense (weak sense) the  sums  δN (x) do approach the delta function ! 
The convergence of a0 + · · · + aN is the statement that at x = 0  the Fourier series of a 
smooth f(x) =  ak cos kx converges to the number f(0). 
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−π π0 

δ5(x) 

δ10(x) 

height 11/2π 

height 21/2π 

height −1/2π 
height 1/2π 

Figure 4.4: The sums δN (x) = (1 + 2 cos  x + · · ·+ 2  cos  Nx)/2π try to approach δ(x). 

Complete Series: Sines and Cosines 

Over the half-period [0, π], the sines are not orthogonal to all the cosines. In fact the 
integral of sin x times 1 is not zero. So for functions F (x) that are  not odd  or even,  
we move to the complete series (sines plus cosines) on the full interval. Since our 
functions are periodic, that “full interval” can be [−π, π] or  [0, 2π]: 

Complete Fourier series F (x) =  a0 + 
∞� 

n=1 

an cos nx + 
∞� 

n=1 

bn sin nx . (19) 

On every “2π interval” all sines and cosines are mutually orthogonal. We find the 
Fourier coefficients ak and bk in the usual way: Multiply (19) by 1 and cos kx and 
sin kx, and integrate both sides from −π to π: 

� π � π � π1 1 1 
a0 = F (x) dx ak = F (x) cos  kx dx bk = F (x) sin  kx dx. (20)

2π −π π −π π −π 

Orthogonality kills off infinitely many integrals and leaves only the one we want. 

Another approach is to split F (x) =  C(x) +  S(x) into an  even  part and  an  odd  
part. Then we can use the earlier cosine and sine formulas. The two parts are 

F (x) +  F (−x) F (x) − F (−x)
C(x) =  Feven(x) =  S(x) =  Fodd(x) =  . (21)

2 2 

The even part gives the a’s  and the  odd part gives  the  b’s.  Test on  a  short square  
pulse from x = 0  to  x = h—this one-sided function is not odd or even. 
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1 for 0 < x < h  
Example 4 Find the a’s and b’s if F (x) =  square pulse = 

0 for h < x <  2π 

Solution The integrals for a0 and ak and bk stop at x = h where F (x) drops to zero. 
The coefficients decay like 1/k because of the jump at x = 0  and the drop at x = h: ∫ h1 h 
Coefficients of square pulse a0 = 1 dx = = average 

2π 0 2π ∫ h ∫ h1 sin kh 1 1 − cos kh 
ak = cos kx dx = bk = sin kx dx = . (22)

π 0 πk π 0 πk 

If we divide F (x) by h, its graph is a tall thin rectangle: height 
h 
1 , base  h, and area  = 1. 

When h approaches zero, F (x)/h is squeezed into a very thin interval. The tall 
rectangle approaches (weakly) the delta function δ(x). The average height is area/2π = 
1/2π. Its other coefficients ak/h and bk/h approach 1/π and 0, already known for δ(x): 

F (x) ak 1 sin kh 1 bk 1 − cos kh → δ(x) = → and = → 0 as h → 0. (23)
h h π kh π h πkh 

When the function has a jump, its Fourier series picks the halfway point. This 
example would converge to F (0) = 1

2 and F (h) =  1
2 , halfway up and halfway down. 

The Fourier series converges to F (x) at each point where the function is smooth. 
This is a highly developed theory, and Carleson won the 2006 Abel Prize by proving 
convergence for every x except a set of measure zero. If the function has finite energy 
|F (x)|2 dx, he showed that the Fourier series converges “almost everywhere.” 

Energy in Function = Energy in Coefficients 

There is an extremely important equation (the energy identity) that comes from 
integrating (F (x))2 . When we square the Fourier series of F (x), and integrate from 
−π to π, all the “cross terms” drop out. The only nonzero integrals come from 12 

and cos2 kx and sin2 kx, multiplied by a2
0 and a2 

k and b2 
k: 

Energy in F (x) = 
∫ π 

−π
(a0 + 

∑ 
ak cos kx + 

∑ 
bk sin kx)2dx ∫ π 

−π
(F (x))2dx = 2πa2 

0 + π(a2 
1 + b2 

1 + a2 
2 + b2 

2 + · · · ). (24) 

The energy in F (x) equals the energy in the coefficients. The left side is like the 
length squared of a vector, except the vector is a function. The right side comes from 
an infinitely long vector of a’s and b’s. The lengths are equal, which says that the 
Fourier transform from function to vector is like an orthogonal matrix. Normalized √ √ 
by constants 2π and π, we have  an  orthonormal basis in function space. 

What is this function space ? It is like ordinary 3-dimensional space, except the 
“vectors” ∫ are functions. Their length ‖f‖ comes from integrating instead of adding: 
‖f‖2 = |f(x)|2dx. These functions fill Hilbert space. The rules of geometry hold: 
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Length ‖f‖2 = (f, f) comes from the inner product (f, g) =  f(x)g(x) dx 

Orthogonal functions (f, g) = 0 produce a right triangle: ‖f + g‖2 = ‖f‖2 + ‖g‖2 

I have tried to draw Hilbert space in Figure 4.5. It has infinitely many axes. The 
energy identity (24) is exactly the Pythagoras Law in infinite-dimensional space. 

= A0v0 + A1v1 + B1v2 + · · ·  

function in Hilbert space 

= A2
0 + A2

1 + B1
2 + · · ·  

2π π 

Figure 4.5: The Fourier series is a combination of orthonormal v’s (sines and cosines). 

Complex Exponentials ckeikx 

This is a small step and we have to take it. In place of separate formulas for a0 and ak 

and bk, we will have one formula for all the complex coefficients ck. And the function 
F (x) might be complex (as in quantum mechanics). The Discrete Fourier Transform 
will be much simpler when we use N complex exponentials for a vector. We practice 
in advance with the complex infinite series for a 2π-periodic function: 

� 

�� 

� 

� 

v0 = 
1 √ v1 = 

cos x √ 

v2 = 
sin x √ 

π 

f 

‖f‖2 

v2k−1 = 
cos kx √ 

π 

v2k = 
sin kx √ 

π 

90◦ 

(vi, vj)=0  

Complex Fourier series F (x) =  c0 + c1e
ix + c−1e

−ix + · · · = 
∞∑ 

n=−∞ 

cne inx (25) 

If every cn = c−n, we  can  combine  einx with e−inx into 2 cos nx. Then (25) is the 
cosine series for an even function. If every cn = −c−n, we  use  einx − e−inx = 2i sin nx. 
Then (25) is the sine series for an odd function and the c’s are pure imaginary. 

To find ck, multiply (25) by e−ikx (not eikx) and integrate from −π to π: ∫ π ∫ π ∫ π ∫ π 
F (x)e −ikxdx = c0e −ikxdx+ c1e ix e −ikxdx+ · · ·+ cke ikx e −ikxdx+ · · ·  

−π −π −π −π 

The complex exponentials are orthogonal. Every integral on the right side is zero, 
except for the highlighted term (when n = k and eikxe−ikx = 1). The integral of 1 is 
2π. That surviving term gives the formula for ck: 

Fourier coefficients 
∫ π 

−π 
F (x)e −ikx dx = 2πck for k = 0, ±1, . . .  (26) 
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Notice that c0 = a0 is still the average of F (x), because e0 = 1. The orthogonality 
of einx and eikx is checked by integrating, as always. But the complex inner product 
(F, G) takes  the  complex conjugate G of G. Before integrating, change eikx to e−ikx: 

Complex inner product Orthogonality of einx and eikx 

(F, G) =  
∫ π 

F (x)G(x) dx 
∫ π 

e i(n−k)xdx = 

[ 
ei(n−k)x ]π 

= 0  . 
(27) 

−π −π i(n − k) −π 

Example 5 Add the complex series for 1/(2 − eix) and 1/(2 − e−ix). These geometric 
series have exponentially fast decay from 1/2k . The functions are analytic. 

1 eix e2ix 1 e−ix e−2ix cos x cos 2x cos 3x 
+ + + ·· + + + + ·· = 1 +  + + + ·· 

2 4 8 2 4 8 2 4 8 

When we add those functions, we get a real analytic function: 

1 1 (2 − e−ix) + (2  − eix) 4 − 2 cos  x 
+ = = (28)

2 − eix 2 − e−ix (2 − eix)(2 − e−ix) 5 − 4 cos  x 

This ratio is the infinitely smooth function whose cosine coefficients are 1/2k . 

1 for s ≤ x ≤ s + h 
Example 6 Find ck for the 2π-periodic shifted pulse F (x) =  

0 elsewhere in [−π, π] 

Solution The integrals (26) from −π to π become integrals from s to s + h: ∫ s + h [ −ikx ]s + h ( −ikh ) 

ck =
1 

1 · e −ikx dx =
1 e

= e −iks 1 − e
. (29)

2π s 2π −ik s 2πik 

Notice above all the simple effect of the shift by s. It “modulates” each ck by e−iks. The  
energy is unchanged, the integral of |F |2 just shifts, and all |e−iks| = 1: 

Shift F (x) to F (x − s) ←→ Multiply ck by e −iks . (30) 

Example 7 Centered pulse with shift s = −h/2. The square pulse becomes centered 
around x = 0. This even function equals 1 on the interval from −h/2 to h/2: 

1 − e
Centered by s = −h ck = eikh/2 

−ikh 

= 
1 sin(kh/2) 

.
2 2πik 2π k/2 

Divide by h for a tall pulse. The ratio of sin(kh/2) to kh/2 is the sinc function: 

∞
Fcentered 1 ∑ kh ikx 1/h for − h/2 ≤ x ≤ h/2 

Tall pulse = sinc e = 
h 2π 2 0 elsewhere in [−π, π]−∞ 

That division by h produces area = 1. Every coefficient approaches 
2
1 
π as h → 0. 

The Fourier series for the tall thin pulse again approaches the Fourier series for δ(x). 
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Hilbert space can contain vectors c = (c0, c1, c−1, c2, c−2, · · · ) instead of functions 
F (x). The length of c is 2π |ck|2 = |F |2dx. The function space is often denoted 
by L2 and the vector space is �2 . The energy identity is trivial (but deep). Integrating 
the Fourier series for F (x) times  F (x), orthogonality kills every cnck for n =� k. This  
leaves the ckck = |ck|2: ∫ π ∫ π ∑ ∑ 

|F (x)|2dx = ( cne inx)( cke −ikx)dx = 2π(|c0|2 + |c1|2 + |c−1|2 + ··) . (31) 
−π −π 

This is Plancherel’s identity: The energy in x-space equals the energy in k-space. 

Finally I want to emphasize the three big rules for operating on F (x) =  cke
ikx: 

dF 
1. The derivative has Fourier coefficients ikck (energy moves to high k).

dx 

ck
2. The integral of F (x) has Fourier coefficients �, k  = 0 (faster decay). 

ik 

3. The shift to F (x−s) has Fourier coefficients e−iksck (no change in energy). 

Application: Laplace’s Equation in a Circle 

Our first application is to Laplace’s equation. The idea is to construct u(x, y) as an  
infinite series, choosing its coefficients to match u0(x, y) along the boundary. Every
thing depends on the shape of the boundary, and we take a circle of radius 1. 

Begin with the simple solutions 1, r cos θ, r sin θ, r2 cos 2θ, r2 sin 2θ, ... to Laplace’s 
equation. Combinations of these special solutions give all solutions in the circle: 

u(r, θ) =  a0 + a1r cos θ + b1r sin θ + a2r
2 cos 2θ + b2r

2 sin 2θ + · · ·  (32)


It remains to choose the constants ak and bk to make u = u0 on the boundary. 
For a circle u0(θ) is periodic, since θ and θ + 2π give the same point: 

Set r = 1  u0(θ) =  a0 + a1 cos θ + b1 sin θ + a2 cos 2θ + b2 sin 2θ + · · ·  (33) 

This is exactly the Fourier series for u0. The constants ak and bk must be the 
Fourier coefficients of u0(θ). Thus the problem is completely solved, if an infinite 
series (32) is acceptable as the solution. 

Example 8 Point source u0 = δ(θ) at θ = 0  The whole boundary is held at u0 = 0, 
except for the source at x = 1, y = 0. Find the temperature u(r, θ) inside. 

∞
1 1 1 ∑ 

Fourier series for δ u0(θ) =  + (cos θ + cos  2θ + cos  3θ + · · · ) =  e inθ 

2π π 2π −∞ 



∫ 

[ ] 

[ ] 
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Inside the circle, each cos nθ is multiplied by rn: 

1 1 
Infinite series for u u(r, θ) =  + (r cos θ + r 2 cos 2θ + r 3 cos 3θ + · · · ) (34) 

2π π 

Poisson managed to sum this infinite series! It involves a series of powers of reiθ . 
So we know the response at every (r, θ) to the point source at r = 1, θ = 0: 

Temperature inside circle u(r, θ) =  
1 
2π 

1 − r2 

1 +  r2 − 2r cos θ 
(35) 

At the center r = 0, this produces the average of u0 = δ(θ) which is a0 = 1/2π. On  the  
boundary r = 1, this produces u = 0  except at the point source where cos 0 = 1: 

1 1 − r2 1 1 +  r 
On the ray θ = 0  u(r, θ) =  = . (36)

2π 1 +  r2 − 2r 2π 1 − r 

As r approaches 1, the solution becomes infinite as the point source requires. 

Example 9 Solve for any boundary values u0(θ) by integrating over point sources. 

When the point source swings around to angle ϕ, the solution (35) changes from θ to 
θ − ϕ. Integrate this “Green’s function” to solve in the circle: 

Poisson’s formula u(r, θ) =  
1 
2π 

∫ π 

−π 
u0(ϕ) 

1 − r2 

1 +  r2 − 2r cos(θ − ϕ) 
dϕ (37) 

Ar r = 0  the fraction disappears and u is the average u0(ϕ)dϕ/2π. The steady 
state temperature at the center is the average temperature around the circle. 

Poisson’s formula illustrates a key idea. Think of any u0(θ) as a circle of point sources. 
The source at angle ϕ = θ produces the solution inside the integral (37). Integrating 
around the circle adds up the responses to all sources and gives the response to u0(θ). 

Example 10 u0(θ) = 1  on the top half of the circle and u0 = −1 on the bottom half. 

Solution The boundary values are the square wave SW (θ). Its sine series is in (8): 

4 sin θ sin 3θ sin 5θ 
Square wave for u0(θ) SW (θ) =  + + + · · ·  (38)

π 1 3 5 

Inside the circle, multiplying by r, r2 , r3,... gives fast decay of high frequencies: 

4 r sin θ r3 sin 3θ r5 sin 5θ 
Rapid decay inside u(r, θ) =  + + + · · ·  (39)

π 1 3 5 

Laplace’s equation has smooth solutions, even when  u0(θ) is not smooth. 



∑ 

4.1 Fourier Series for Periodic Functions 329 

WORKED EXAMPLE 

A hot metal bar is moved into a freezer (zero temperature). The sides of the bar 
are coated so that heat only escapes at the ends. What is the temperature u(x, t) 
along the bar at time t? It will approach u = 0 as all the heat leaves the bar. 

Solution The heat equation is ut = uxx. At  t = 0 the whole bar is at a constant 
temperature, say u =1. The ends of the bar are at zero temperature for all time t>0. 
This is an initial-boundary value problem: 

Heat equation ut = uxx with u(x, 0) = 1 and u(0, t) =  u(π, t) =  0. (40) 

Those zero boundary conditions suggest a sine series. Its coefficients depend on t: 

∞
Series solution of the heat equation u(x, t) =  bn(t) sin  nx. (41) 

1 

The form of the solution shows separation of variables. In a comment below, we 
look for products A(x) B(t) that solve the heat equation and the boundary conditions. 
What we reach is exactly A(x) =  sin  nx and the series solution (41). 

Two steps remain. First, choose each bn(t) sin  nx to satisfy the heat equation: 

Substitute into ut = uxx b ′ n(t) sin  nx = −n2bn(t) sin  nx bn(t) =  e−n2t bn(0). 

Notice bn 
′ = −n2bn. Now determine each bn(0) from the initial condition u(x, 0) = 1 

on (0, π). Those numbers are the Fourier sine coefficients of SW (x) in equation (38): 

Box function/square wave 
∞∑ 

1 

bn(0) sin nx = 1  bn(0) = 
4 

πn 
for odd n 

This completes the series solution of the initial-boundary value problem:


∑ 4 
Bar temperature u(x, t) =  e −n2t sin nx. (42)

πn 
odd n 

For large n (high frequencies) the decay of e−n2t is very fast. The dominant term 
(4/π)e−t sin x for large times will come from n = 1. This is typical of the heat 
equation and all diffusion, that the solution (the temperature profile) becomes very 
smooth as t increases. 

Numerical difficulty I regret any bad news in such a beautiful solution. To compute 
u(x, t), we would probably truncate the series in (42) to N terms. When that finite 
series is graphed on the website, serious bumps appear in uN (x, t). You ask if there 
is a physical reason but there isn’t. The solution should have maximum temperature 
at the midpoint x = π/2, and decay smoothly to zero at the ends of the bar. 
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Those unphysical bumps are precisely the Gibbs phenomenon. The initial 
u(x, 0) is 1 on (0, π) but its odd reflection is −1 on  (−π, 0). That jump has produced 
the slow 4/πn decay of the coefficients, with Gibbs oscillations near x = 0 and  x = π. 
The sine series for u(x, t) is not a success numerically. Would finite differences help? 

Separation of variables We found bn(t) as the coefficient of an eigenfunction sin nx. 
Another good approach is to put u = A(x) B(t) directly into ut = uxx: 

Separation A(x) B ′(t) =  A ′′(x) B(t) requires  
A ′′(x)

= 
B ′(t)

= constant. (43)
A(x) B(t) 

A ′′/A is constant in space, B ′/B is constant in time, and they are equal: 

A ′′ √ √ B ′ 
= −λ gives A = sin  λx  and cos λ x  = −λ gives B = e −λt 

A B 

√ √ 
The products AB = e−λt sin λ x  and e−λt cos λ x  solve the heat equation for any 
number λ. But the boundary condition u(0, t) = √0 eliminates the cosines. Then 
u(π, t) = 0  requires  λ = n2 = 1, 4, 9, . . .  to have sin λπ  = 0. Separation of variables 
has recovered the functions in the series solution (42). 

Finally u(x, 0) = 1 determines the numbers 4/πn for odd n. We find zero for even 
n because sin nx has n/2 positive loops and n/2 negative loops. For odd n, the extra 
positive loop is a fraction 1/n of all loops, giving slow decay of the coefficients. 

Heat bath (the opposite problem) The solution on the website is 1 − u(x, t), 
because it solves a different problem. The bar is initially frozen at U(x, 0) = 
0. It is placed into a heat bath at the fixed temperature U = 1  (or  U = T0). 
The new unknown is U and its boundary conditions are no longer zero. 

The heat equation and its boundary conditions are solved first by UB (x, t). In 
this example UB ≡ 1 is constant. Then the difference V = U − UB has zero boundary 
values, and its initial values are V = −1. Now the eigenfunction method (or sepa
ration of variables) solves for V . (The series in (42) is multiplied by −1 to account  
for V (x, 0) = −1.) Adding back UB solves the heat bath problem: U = UB + V = 
1 − u(x, t). 

Here UB ≡ 1 is  the  steady state solution at t = ∞, and  V is the transient solution. 
The transient starts at V = −1 and decays quickly to V = 0.  

Heat bath at one end The website problem is different in another way too. The 
Dirichlet condition u(π, t) = 1 is replaced by the Neumann condition u ′(1, t) =  0.  
Only the left end is in the heat bath. Heat flows down the metal bar and out at the 
far end, now located at x = 1. How does the solution change for fixed-free? 

Again UB = 1 is a steady state. The boundary conditions apply to V = 1  − UB : 

Fixed-free 
eigenfunctions 

V (0) = 0 and V ′(1) = 0 lead to A(x) = sin  

( 

n + 
1 
2 

) 

πx. (44) 



( ) 

( ) 
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Those eigenfunctions give a new form for the sum of Bn(t) An(x): 

Fixed-free solution V (x, t) =  
∑ 

Bn(0) e −(n+ 
2

1 )2π2t sin n +
1 

πx. (45)
2 

odd n 

All frequencies shift by 
2
1 and multiply by π, because A ′′ = −λA has a free end 

at x = 1. The crucial question is: Does orthogonality still hold for these new 
eigenfunctions sin n + 1

2 πx on [0, 1]? The answer is yes because this fixed-free 
“Sturm–Liouville problem” A ′′ = −λA is still symmetric. 

Summary The series solutions all succeed but the truncated series all fail. We can 
see the overall behavior of u(x, t) and  V (x, t). But their exact values close to the 
jumps are not computed well until we improve on Gibbs. 

We could have solved the fixed-free problem on [0, 1] with the fixed-fixed solution 
on [0, 2]. That solution will be symmetric around x = 1 so its slope there is zero. 
Then rescaling x by 2π changes sin(n + 1

2 )πx into sin(2n + 1)x. I hope you like the 
graphics created by Aslan Kasimov on the cse website. 

Problem Set 4.1 

1	 Find the Fourier series on −π ≤ x ≤ π for 

(a) f(x) = sin3 x, an odd function 

(b) f(x) =  | sin x|, an even function 

(c) f(x) =  x 

(d) f(x) =  ex, using the complex form of the series. 

What are the even and odd parts of f(x) =  ex and f(x) =  eix? 

2	 From Parseval’s formula the square wave sine coefficients satisfy ∫ π ∫ π 

π(b2
1 + b2

2 + · · · ) =  |f(x)|2 dx = 1 dx = 2π. 
−π −π 

1Derive the remarkable sum π2 = 8(1  +  1
9 + 

25 + · · · ). 
3	 If a square pulse is centered at x = 0  to  give  

π	 π 
f(x) = 1  for  |x| < , f(x) = 0  for  < |x| < π,  

2 2

draw its graph and find its Fourier coefficients ak and bk.


4	 Suppose f has period T instead of 2x, so  that  f(x) =  f(x + T ). Its graph from 
−T/2 to  T/2 is repeated on each successive interval and its real and complex 
Fourier series are 

∞
2πx 2πx ∑ 

f(x) =  a0 + a1 cos + b1 sin + · · · = ck e ik2πx/T 

T T −∞ 

Multiplying by the right functions and integrating from −T/2 to  T/2, find ak, 
bk, and  ck. 
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5	 Plot the first three partial sums and the function itself: 

8 sin x sin 3x sin 5x 
x(π − x) =  + + + · · ·  , 0 < x  <  π.  

π 1 27 125 

Why is 1/k3 the decay rate for this function? What is the second derivative? 

6 What constant function is closest in the least square sense to f = cos2 x? What  
multiple of cos x is closest to f = cos3 x? 

7 Sketch the 2π-periodic half wave with f(x) =  sin  x for 0 < x < π  and f(x) = 0  
for −π < x < 0. Find its Fourier series. 

8 (a) Find the lengths of the vectors u = (1,
2
1 ,

4
1 ,

8
1 

3
1 ,

9
1 , . . .) and  v = (1, , . . .) in  

Hilbert space and test the Schwarz inequality |uTv|2 ≤ (uTu)(vTv). 

(b) For the functions f = 1 +  1
2 e

ix + 
4
1 e2ix + · · ·  and g = 1 +  

3
1 eix + 

9
1 2ixe + · · ·  

use part (a) to find the numerical value of each term in 

2 

−π	 −π 

∫ π ∫ π ∫ π 

|f(x)|2 dx |g(x)|2 dx. 
−π 

f(x) g(x) dx
 ≤


Substitute for f and g and use orthogonality (or Parseval). 

9	 Find the solution to Laplace’s equation with u0 = θ on the boundary. Why is 
this the imaginary part of 2(z − z2/2 +  z3/3 · · · ) = 2 log(1 + z)? Confirm that 
on the unit circle z = eiθ, the imaginary part of 2 log(1 + z) agrees with θ. 

10	 If the boundary condition for Laplace’s equation is u0 = 1  for  0  < θ < π  and 
u0 = 0 for  −π < θ <  0, find the Fourier series solution u(r, θ) inside the unit 
circle. What is u at the origin? 

11	 With boundary values u0(θ) = 1 +  1
2 e

iθ + 1
4 e

2iθ + · · · , what is the Fourier series 
solution to Laplace’s equation in the circle? Sum the series. 

12 (a) Verify that the fraction in Poisson’s formula satisfies Laplace’s equation. 

(b) What is the response u(r, θ) to an impulse at the point (0, 1), at the angle 
ϕ = π/2? 

(c) If u0(ϕ) = 1 in the quarter-circle 0 < ϕ  < π/2 and  u0 = 0 elsewhere, show 
that at points on the horizontal axis (and especially at the origin) 

21	 1 1 − r
u(r, 0) = −1+	 tan by using


2 2π −2r (√ 
dϕ 1 −1 b2 − c2 sin ϕ 

= √ tan	 . 
b + c cos ϕ b2 − c2 c + b cos ϕ 
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13	 When the centered square pulse in Example 7 has width h = π, find 

(a) its energy |F (x)|2 dx by direct integration 

(b) its Fourier coefficients ck as specific numbers 

(c) the sum in the energy identity (31) or (24) 

If h = 2π, why  is  c0 = 1 the only nonzero coefficient ? What is F (x)? 

14 In Example 5, F (x) = 1+(cos  x)/2+ · · ·+(cos  nx)/2n + · · ·  is infinitely smooth: 

(a) If you take 10 derivatives, what is the Fourier series of d10F/dx10? 

(b) Does that series still converge quickly? Compare n10 with 2n for n1024 . 

15	 (A touch of complex analysis) The analytic function in Example 5 blows up 
when 4 cos x = 5. This cannot happen for real x, but equation (28) shows 
blowup if eix = 2 or  1

2 . In  that  case  we  have  poles at x = ±i log 2. Why are 
there also poles at all the complex numbers x = ±i log 2 + 2πn ? 

16	 (A second touch) Change 2’s to 3’s so that equation (28) has 1/(3 − eix) +  
1/(3 − e−ix). Complete that equation to find the function that gives fast decay 
at the rate 1/3k . 

17	 (For complex professors only) Change those 2’s and 3’s to 1’s: 

1 1 (1 − e−ix) + (1  − eix) 2 − eix − e−ix 

+ =	 = = 1  . 
1 − eix 1 − e−ix (1 − eix)(1 − e−ix) 2 − eix − e−ix 

A constant ! What happened to the pole at eix = 1 ? Where is the dangerous 
series (1 + eix + · · · ) + (1  +  e−ix + · · · ) =  2 + 2 cos  x + · · ·  involving δ(x) ?  

18	 Following the Worked Example, solve the heat equation ut = uxx from a point 
source u(x, 0) = δ(x) with free boundary conditions u ′(π, t) =  u ′(−π, t) = 0.  
Use the infinite cosine series for δ(x) with time decay factors bn(t). 




