Studio 5: Bayesian Updating 18.05 Spring 2014

You should have downloaded studio5.zip and unzipped it into your 18.05 working directory.

Board question

- 1. Consider the random die problem: 5 dice with sides 4, 6, 8, 12 or 20. I choose one die at random and roll it repeatedly, reporting the results to you. Your job is to figure out which die I chose.
- (a) List all possible hypotheses.
- **(b)** List all possible outcomes for the *j*th roll.
- (c) Let x_j be the random variable equal to the outcome of the jth roll, j = 1, 2, ...
- Write out the entire likelihood table for the *j*th roll. The table has a column of likelihoods for each possible outcome.

Solutions on next slide.

Solution

- (a) The hypotheses are that the die has 4, 6, 8, 12, or 20 sides. Let's call these H_4 , H_6 etc.
- **(b)** The possible outcomes are the numbers 1 to 20.
- (c) The rows in the table are hypotheses; the columns are outcomes. To save space, we combine outcomes that give the same likelihoods into one column.
- x_j is the outcome of the jth roll.

Hypothesis	$x_j = 1-4$	$x_j = 5-6$	$x_j = 7-8$	$x_j = 9-12$	$x_j = 13-20$
H_4	1/4	0	0	0	0
H ₆	1/6	1/6	0	0	0
H ₈	1/8	1/8	1/8	0	0
H_{12}	1/12	1/12	1/12	1/12	0
H ₂₀	1/20	1/20	1/20	1/20	1/20

R question

- **2. (a)** Go through the simulation of Baysian updating in studio5.r. After running through the loop of 20 rolls be sure to click through all the plots in RStudio.
- **(b)** Use the same dataRolls as in part (a) and redo the simulation with a new prior distribution.

\mathcal{H}	4	6	8	12	20
$P(\mathcal{H})$.05	.05	.05	.05	.80

- (c) Describe how the posterior distributions compare.
- (d) Redo the simulation with the original prior distribution but generate the sample rolls dataRolls from a 20-sided die.

Censored data

3. Suppose we only observe **censored** values of the rolls. For the *j*th roll we observe

$$y_j = \begin{cases} 1 & if \quad x_j = 1 \\ 0 & if \quad x_j \neq 1 \end{cases}$$

Instead of the actual rolls you only see the censored data y_1, y_2, \ldots

- (a) List all the possible hypotheses.
- **(b)** Write out the entire likelihood table for one roll y_j .
- (c) Modify the R simulation to simulate this censored scenario.
 - Use nrolls = 20 in the simulation. After the 20th roll has the posterior nearly converged on the true hypothesis?
 - Investigate how many rolls are needed to see a clear convergence of the posterior distribution.

MIT OpenCourseWare https://ocw.mit.edu

18.05 Introduction to Probability and Statistics Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.