Studio 2 Solutions, 18.05 Jeremy Orloff and Jonathan Bloom

Here we will give a detailed solution to the problem from studio 2 . We will include R -code for solving it. That code will also be in the studio2.r file posted elsewhere on our websites.
Exercise 3. A friend has a coin with probability .6 of heads. She proposes the following gambling game.

- You will toss it 10 times and count the number of heads.
- The amount you win or lose on k heads is given by $k^{2}-7 k$
(a) Plot the payoff function.
(b) Make an exact computation using R to decide if this is a good bet.
(c) Run a simulation and see that it approximates your computation in part (b)
answer: The experiment is counting the number of heads in 10 independent tosses of a coin. The set of possible counts is $\{0,1,2, \ldots, 10\}$. Let's call the payoff function Y. If the count is k heads then the payoff is $k^{2}-7 k$. So,

$$
Y(k)=k^{2}-7 k
$$

Y is a random variable because on the number of heads.
(a) Here's the code for plotting the payoff function $Y(k)$.

```
    # Plot the payoff as a function of k
outcomes = 0:10
payoff = outcomes^2 - 7*outcomes
plot(outcomes, payoff, pch=19) # pch=19 tells plot to use solid circles
```


(b) Probability of outcomes:

$$
P(k \text { heads })=\binom{10}{k}(.6)^{k}(.4)^{10-k}, \quad \text { for } k=0,1, \ldots, 10
$$

The expected value of Y is the average amount you will win (or lose) over a large number of bets. If this is positive the bet is a good one because on average you will win more than you'll lose. The expected value is the (weighted) sum of probabilities times values. We can write this simply as

$$
\begin{aligned}
E(Y) & =P(0 \text { heads }) \cdot Y(0)+P(1 \text { head }) \cdot Y(1)+\ldots+P(10 \text { heads }) \cdot Y(10) \\
& =\sum_{k=0}^{10}\binom{10}{k}(.6)^{k}(.4)^{10-k} \cdot\left(k^{2}-7 k\right)
\end{aligned}
$$

Here's the code for computing $E(Y)$ exactly.

```
# Compute E(Y)
phead = . }
ntosses = 10
outcomes = 0:ntosses
payoff = outcomes^2 - 7*outcomes
# We compute the entire vector of probabilities using dbinom
countProbabilities = dbinom(outcomes, ntosses, phead)
countProbabilities # This is just to take a look at the probabilities
expectedValue = sum(countProbabilities*payoff) # This is the weighted sum
expectedValue
```

This code gives
countProbabilities =
[1] 0.00010485760 .00157286400 .01061683200 .04246732800 .11147673600 .2006581248
[7] 0.25082265600 .21499084800 .12093235200 .04031078400 .0060466176
and
expectedValue $=-3.6$. The bet is not a good one.
(c) The R function rbinom makes it easy to simulate 1000 games. Here's the code

```
phead = . }
ntosses = 10
ntrials = 1000
# We use rbinom to generate a vector of ntrials binomial outcomes
trials = rbinom(ntrials, ntosses, phead)
# trials is a vector of counts. We apply the payoff formula to the entire vector
payoffs = trials^2 - 7*trials
mean(payoffs)
```

I ran this code 5 times and got 5 numbers all close to -3.6
$-3.688,-3.642,-3.818,-3.584,-3.722$

MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

