Manipulating Continuous Random Variables Class 5, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

1 Learning Goals

1. Be able to find the pdf and cdf of a random variable defined in terms of a random variable with known pdf and cdf.

2 Transformations of Random Variables

If Y = aX + b then the properties of expectation and variance tell us that E(Y) = aE(X) + band $Var(Y) = a^2Var(X)$. But what is the distribution function of Y? If Y is continuous, what is its pdf?

Often, when looking at transforms of discrete random variables we work with tables. For continuous random variables transforming the pdf is just change of variables ('*u*-substitution') from calculus. Transforming the cdf makes direct use of the definition of the cdf.

Let's remind ourselves of the basics:

1. The cdf of X is $F_X(x) = P(X \le x)$.

2. The pdf of X is related to F_X by $f_X(x) = F'_X(x)$.

Example 1. Let $X \sim U(0,2)$, so $f_X(x) = 1/2$ and $F_X(x) = x/2$ on [0,2]. What is the range, pdf and cdf of $Y = X^2$?

answer: The range is easy: [0, 4].

To find the cdf we work systematically from the definition.

$$F_Y(y) = P(Y \le y) = P(X^2 \le y) = P(X \le \sqrt{y}) = F_X(\sqrt{y}) = \sqrt{y}/2.$$

To find the pdf we can just differentiate the cdf

$$f_Y(y) = \frac{d}{dy}F_Y(y) = \boxed{\frac{1}{4\sqrt{y}}}.$$

An alternative way to find the pdf directly is by change of variables. The trick here is to remember that it is $f_X(x)dx$ which gives probability $(f_X(x))$ by itself is probability density). Here is how the calculation goes in this example.

$$y = x^2 \Rightarrow dy = 2x \, dx \Rightarrow dx = \frac{dy}{2\sqrt{y}}$$

 $f_X(x) \, dx = \frac{dx}{2} = \frac{dy}{4\sqrt{y}} = f_Y(y) \, dy$

Therefore $f_Y(y) = \frac{dy}{4\sqrt{y}}$

Example 2. Let $X \sim \exp(\lambda)$, so $f_X(x) = \lambda e^{-\lambda x}$ on $[0, \infty]$. What is the density of $Y = X^2$? **answer:** Let's do this using the change of variables.

$$y = x^2 \Rightarrow dy = 2x \, dx \Rightarrow dx = \frac{dy}{2\sqrt{y}}$$

 $f_X(x) \, dx = \lambda e^{-\lambda x} \, dx = \lambda e^{-\lambda \sqrt{y}} \frac{dy}{2\sqrt{y}} = f_Y(y) \, dy$

Therefore $f_Y(y) = \frac{\lambda}{2\sqrt{y}} e^{-\lambda\sqrt{y}}$.

Example 3. Assume $X \sim N(5, 3^2)$. Show that $Z = \frac{X-5}{3}$ is standard normal, i.e., $Z \sim N(0, 1)$.

answer: Again using the change of variables and the formula for $f_X(x)$ we have

$$z = \frac{x-5}{3} \Rightarrow dz = \frac{dx}{3} \Rightarrow dx = 3 dz$$

$$f_X(x) \, dx = \frac{1}{3\sqrt{2\pi}} \mathrm{e}^{-(x-5)^2/(2\cdot 3^2)} \, dx = \frac{1}{3\sqrt{2\pi}} \mathrm{e}^{-z^2/2} \, 3 \, dz = \frac{1}{\sqrt{2\pi}} \mathrm{e}^{-z^2/2} \, dz = f_Z(z) \, dz$$

Therefore $f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$. Since this is exactly the density for N(0,1) we have shown that Z is standard normal.

This example shows an important general property of normal random variables which we give in the next example.

Example 4. Assume $X \sim N(\mu, \sigma^2)$. Show that $Z = \frac{X - \mu}{\sigma}$ is standard normal, i.e., $Z \sim N(0, 1)$.

answer: This is exactly the same computation as the previous example with μ replacing 5 and σ replacing 3. We show the computation without comment.

$$z = \frac{x - \mu}{\sigma} \Rightarrow dz = \frac{dx}{\sigma} \Rightarrow dx = \sigma dz$$

$$f_X(x) \, dx = \frac{1}{\sigma\sqrt{2\pi}} \mathrm{e}^{-(x-\mu)^2/(2\cdot\sigma^2)} \, dx = \frac{1}{\sigma\sqrt{2\pi}} \mathrm{e}^{-z^2/2} \, \sigma \, dz = \frac{1}{\sqrt{2\pi}} \mathrm{e}^{-z^2/2} \, dz = f_Z(z) \, dz$$

Therefore $f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$. This shows Z is standard normal.

18.05 Introduction to Probability and Statistics Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.