
Expectation, Variance and Standard Deviation for
Continuous Random Variables

Class 6, 18.05
Jeremy Orloff and Jonathan Bloom

1 Learning Goals

1. Be able to compute and interpret expectation, variance, and standard deviation for
continuous random variables.

2. Be able to compute and interpret quantiles for discrete and continuous random variables.

2 Introduction

So far we have looked at expected value, standard deviation, and variance for discrete
random variables. These summary statistics have the same meaning for continuous random
variables:

• The expected value µ = E(X) is a measure of location or central tendency.

• The standard deviation σ is a measure of the spread or scale.

• The variance σ2 = Var(X) is the square of the standard deviation.

To move from discrete to continuous, we will simply replace the sums in the formulas by
integrals. We will do this carefully and go through many examples in the following sections.
In the last section, we will introduce another type of summary statistic, quantiles. You may
already be familiar with the .5 quantile of a distribution, otherwise known as the median
or 50th percentile.

3 Expected value of a continuous random variable

Definition: Let X be a continuous random variable with range [a, b] and probability
density function f(x). The expected value of X is defined by

E(X) =

∫ b

xf(x) dx.
a

Let’s see how this compares with the formula for a discrete random variable:

n

E(X) =
∑

xip(xi).
i=1

The discrete formula says to take a weighted sum of the values xi of X, where the weights are
the probabilities p(xi). Recall that f(x) is a probability density. Its units are prob/(unit ofX).
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So f(x) dx represents the probability that X is in an infinitesimal range of width dx around
x. Thus we can interpret the formula for E(X) as a weighted integral of the values x of X,
where the weights are the probabilities f(x) dx.

As before, the expected value is also called the mean or average.

3.1 Examples

Let’s go through several example computations. Where the solution requires an integration
technique, we push the computation of the integral to the appendix.

Example 1. Let X ∼ uniform(0, 1). Find E(X).

answer: X has range [0, 1] and density f(x) = 1. Therefore,

E(X) =

∫ 1 x2
x dx =

0 2

∣∣∣∣1
0

=
1

2
.

Not surprisingly the mean is at the midpoint of the range.

Example 2. Let X have range [0, 2] and density 3x2. Find E(X).8

answer:

E(X) =

∫ 2

0
xf(x) dx =

∫ 2

0

3

8
x3 dx =

3x4

32

∣∣∣∣2
0

=
3

2
.

Does it make sense that this X has mean is in the right half of its range?

answer: Yes. Since the probability density increases as x increases over the range, the
average value of x should be in the right half of the range.

x

f(x)

1 µ = 1.5

µ is “pulled” to the right of the midpoint 1 because there is more mass to the right.

Example 3. Let X ∼ exp(λ). Find E(X).

answer: The range of X is [0,∞) and its pdf is f(x) = λe−λx. So (details in appendix)

E(X) =

∫ ∞ λx

λe−λx dx =
0

−λ −λx e−
e −

λ

∣∣∣∣∞
0

=
1

λ
.

x

f(x) = λe−λx

µ = 1/λ

Mean of an exponential random variable
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Example 4. Let Z ∼ N(0, 1). Find E(Z).

answer: The range of Z is (−∞,∞) and its pdf is φ(z) =
1√ 2

e−z /2. So (details in
2π

appendix)

E(Z) =

∫ ∞ 1

−∞
√

2π
ze−z

2/2 dz = − 1√
2π

e−z
2/2

∣∣∣∣∞
−∞

= 0 .

z

φ(z)

µ = 0

The standard normal distribution is symmetric and has mean 0.

3.2 Properties of E(X)

The properties of E(X) for continuous random variables are the same as for discrete ones:

1. If X and Y are random variables on a sample space Ω then

E(X + Y ) = E(X) + E(Y ). (linearity I)

2. If a and b are constants then

E(aX + b) = aE(X) + b. (linearity II)

Example 5. In this example we verify that for X ∼ N(µ, σ) we have E(X) = µ.

answer: Example (4) showed that for standard normal Z, E(Z) = 0. We could mimic
the calculation there to show that E(X) = µ. Instead we will use the linearity properties
of E(X). In the class 5 notes on manipulating random variables we showed that if X

2
∼

N(µ, σ ) is a normal random variable we can standardize it:

X
Z =

− µ
N(0

σ
∼ , 1).

Inverting this formula we have X = σ Z + µ. The linearity of expected value now gives

E(X) = E(σ Z + µ) = σ E(Z) + µ = µ

3.3 Expectation of Functions of X

This works exactly the same as the discrete case. if h(x) is a function then Y = h(X) is a
random variable and ∞

E(Y ) = E(h(X)) =

∫
h(x)fX(x) dx.

−∞

Example 6. Let X ∼ exp(λ). Find E(X2).

answer: Using integration by parts we have

E(X2) =

∫ ∞
x2λe−λx dx =

0

[
−x2e−λx 2x−

λ
e−λx − 2

λ2
e−λx

]∞
0

=
2

λ2
.
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4 Variance

Now that we’ve defined expectation for continuous random variables, the definition of vari-
ance is identical to that of discrete random variables.

Definition: Let X be a continuous random variable with mean µ. The variance of X is

Var(X) = E((X − µ)2).

4.1 Properties of Variance

These are exactly the same as in the discrete case.

1. If X and Y are independent then Var(X + Y ) = Var(X) + Var(Y ).

2. For constants a and b, Var(aX + b) = a2Var(X).

3. Theorem: Var(X) = E(X2)− E(X)2 = E(X2)− µ2.
For Property 1, note carefully the requirement that X and Y are independent.

Property 3 gives a formula for Var(X) that is often easier to use in hand calculations. The
proofs of properties 2 and 3 are essentially identical to those in the discrete case. We will
not give them here.

Example 7. Let X ∼ uniform(0, 1). Find Var(X) and σX .

answer: In Example 1 we found µ = 1/2. Next we compute

1 1
Var(X) = E((X − µ)2) =

∫
(x− 1/2)2 dx =

0 12
.

Example 8. Let X ∼ exp(λ). Find Var(X) and σX .

answer: In Examples 3 and 6 we computed

E(X) =

∫ ∞
0

xλe−λx dx =
1

λ
and E(X2) =

∫ ∞
0

x2λe−λx dx =
2
.

λ2

So by Property 3,

Var(X) = E(X2)− E(X)2
2

=
λ2
− 1

λ2
=

1

λ2
and σX =

1
.

λ

We could have skipped Property 3 and computed this directly from Var(X) =
∫∞

(x− 1/λ)2λe−λx dx.0

Example 9. Let Z ∼ N(0, 1). Show Var(Z) = 1.

Note: The notation for normal variables is X ∼ N(µ, σ2). This is certainly suggestive, but
as mathematicians we need to prove that E(X) = µ and Var(X) = σ2. Above we showed
E(X) = µ. This example shows that Var(Z) = 1, just as the notation suggests. In the next
example we’ll show Var(X) = σ2.

answer: Since E(Z) = 0, we have

Var(Z) = E(Z2 1
) = √

∞

2π

∫
z2e−z

2/2 dz.
−∞
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2 2
(using integration by parts with u = z, v′ = ze−z /2 ⇒ u′ = 1, v = −e−z /2)

1
= √

2π

(
−ze−z2/2

∣∣∣∞
−∞

)
+

1√
2

∫ ∞
e−z

2/2 dz.
π −∞

The first term equals 0 because the exponential goes to zero much faster than z grows at
both ±∞. The second term equals 1 because it is exactly the total probability integral of
the pdf ϕ(z) for N(0, 1). So Var(X) = 1.

Example 10. Let X ∼ N(µ, σ2). Show Var(X) = σ2.

answer: This is an exercise in change of variables. Letting z = (x− µ)/σ, we have

Var(X) = E((X − µ)2
1

) = √
2π σ

∫ ∞
−∞

(x− µ)2e−(x−µ)
2/2σ2

dx

=
σ2√ /

2

∫ ∞
2

z2e−z 2 dz = σ2.
π −∞

The integral in the last line is the same one we computed for Var(Z).

5 Quantiles

Definition: The median of X is the value x for which P (X ≤ x) = 0.5, i.e. the value
of x such that P (X ≤ X) = P (X ≥ x). In other words, X has equal probability of
being above or below the median, and each probability is therefore 1/2. In terms of the
cdf F (x) = P (X ≤ x), we can equivalently define the median as the value x satisfying
F (x) = 0.5.

Think: What is the median of Z?

answer: By symmetry, the median is 0.

Example 11. Find the median of X ∼ exp(λ).

answer: The cdf of X is F (x) = 1 − e−λx. So the median is the value of x for which

F (x) = 1− e−λx = 0.5.. Solving for x we find: x = (ln 2)/λ .

Think: In this case the median does not equal the mean of µ = 1/λ. Based on the graph
of the pdf of X can you argue why the median is to the left of the mean.

Definition: The pth quantile of X is the value qp such that P (X ≤ qp) = p.

Notes. 1. In this notation the median is q0.5.

2. We will usually write this in terms of the cdf: F (qp) = p.

With respect to the pdf f(x), the quantile qp is the value such that there is an area of p to
the left of qp and an area of 1 − p to the right of qp. In the examples below, note how we
can represent the quantile graphically using either area of the pdf or height of the cdf.

Example 12. Find the 0.6 quantile for X ∼ U(0, 1).
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answer: The cdf for X is F (x) = x on the range [0,1]. So q0.6 = 0.6.

x

f(x)

q0.6 = 0.6

left tail area = prob = 0.6

x

F (x)

q0.6 = 0.6

F (q0.6) = 0.6

1

q0.6: left tail area = 0.6 ⇔ F (q0.6) = 0.6

Example 13. Find the 0.6 quantile of the standard normal distribution.

answer: We don’t have a formula for the cdf, so we use the R ‘quantile function’ qnorm.

q0.6 = qnorm(0.6, 0, 1) = 0.25335

z

φ(z)

q0.6 = 0.253

left tail area = prob. = .6

z

Φ(z)

q0.6 = 0.253

F (q0.6) = 0.6

1

q0.6: left tail area = 0.6 ⇔ F (q.6) = 0.6

Quantiles give a useful measure of location for a random variable. We will use them more
in coming lectures.

5.1 Percentiles, deciles, quartiles

For convenience, quantiles are often described in terms of percentiles, deciles or quartiles.
The 60th percentile is the same as the 0.6 quantile. For example you are in the 60th percentile
for height if you are taller than 60 percent of the population, i.e. the probability that you
are taller than a randomly chosen person is 60 percent.

Likewise, deciles represent steps of 1/10. The third decile is the 0.3 quantile. Quartiles are
in steps of 1/4. The third quartile is the 0.75 quantile and the 75th percentile.

6 Appendix: Integral Computation Details

Example 3: Let X ∼ exp(λ). Find E(X).

The range of X is [0,∞) and its pdf is f(x) = λe−λx. Therefore

E(X) =

∫ ∞
xf(x) dx =

0

∫ ∞
λxe−λx dx

0
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(using integration by parts with u = x, v′ = λe−λx ⇒ u′ = 1, v = −e−λx)

= −xe−λx
∞ ∞

+ e−λx dx
0 0

e−λx

∣ ∫
= 0−

∣∣
λ

∣∣∣∣∞
0

=
1
.

λ

We used the fact that xe−λx and e−λx go to 0 as x→∞.

Example 4: Let Z ∼ N(0, 1). Find E(Z).

1
The range of Z is (−∞,∞) and its pdf is φ(z) = √ 2

e−z /2. By symmetry the mean must
2π

be 0. The only mathematically tricky part is to show that the integral converges, i.e. that
the mean exists at all (some random variable do not have means, but we will not encounter
this very often.) For completeness we include the argument, though this is not something
we will ask you to do. We first compute the integral from 0 to ∞:∫ ∞ 1

zφ(z) dz =
0

√
∞

2π

∫
ze−z

2/2 dz.
0

The u-substitution u = z2/2 gives du = z dz. So the integral becomes

1√
2π

∫ ∞
0

ze−z
2/2 dz. =

1√ −
2

∫ ∞
e−u du =

π 0
−e u

∣∣∞ = 1
0

Similarly,

∫ 0

zφ(z) dz = −1. Adding the two pieces together gives E(Z) = 0.
−∞

Example 6: Let X ∼ exp(λ). Find E(X2).

E(X2
∞ ∞

) =

∫
x2f(x) dx =

0

∫
λx2e−λx dx

0

(using integration by parts with u = x2, v′ = λe−λx ⇒ u′ = 2x, v = −e−λx)

2 λx
∣∣∣∞ ∫ ∞

= −x e− + 2xe−λx dx
0 0

(the first term is 0, for the second term use integration by parts: u = 2x, v′ = e−λx ⇒
u′

λx
= v = − e−2, λ )

= −2x
e−λx

λ

∣∣∣∣∞
0

+

∫ ∞
0

e−λx
dx

λ

e−λx
= 0− 2

∞

λ2

∣∣∣ 2∣ =
0 λ2

.
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