
Exam 2 Practice Questions –solutions, 18.05, Spring 2014

1 Topics

• Statistics: data, MLE (pset 5)

• Bayesian inference: prior, likelihood, posterior, predictive probability, probability in-
tervals (psets 5, 6)

• Frequentist inference: NHST (psets 7, 8)

2 Using the probability tables

You should become familiar with the probability tables at the end of these notes.

1. (a) (i) The table gives this value as P (Z < 1.5) = 0.9332.

(ii) This is the complement of the answer in (i): P (Z > 1.5) = 1− 0.9332 = 0.0668. Or by
symmetry we could use the table for -1.5.

(iii) We want P (Z < 1.5)−P (Z < −1.5) = P (Z < 1.5)−P (Z > 1.5). This is the difference
of the answers in (i) and (ii): .8664.

(iv) A rough estimate is the average of P (Z < 1.6) and P (Z < 1.65). That is,

P (Z < 1.6) + P (Z < 1.65)
P (Z < 1.625) ≈

2
=
.9452 + .9505

= .9479.
2

(b) (i) We are looking for the table entry with probability 0.95. This is between the table
entries for z = 1.65 and z = 1.60 and very close to that of z = 1.65. Answer: the region is
[1.64,∞). (R gives the ‘exact’ lower limit as 1.644854.)

(ii) We want the table entry with probability 0.1. The table probabilities for z = −1.25 and
z = −1.30 are 0.1056 and 0.0968. Since 0.1 is about 1/2 way from the first to the second
we take the left critical value as -1.275. Our region is

(−∞,−1.275) ∪ (1.275,∞).

(R gives qnorm(0.1, 0, 1) = -1.2816.)

(iii) This is the range from q0.25 to q0.75. With the table we estimate q0.25 is about 1/2 of
the way from -0.65 to -0.70, i.e. ≈ −0.675. So, the range is [−0.675, 0.675].

2. (a) (i) The question asks to find which p-value goes with t = 1.6 when df = 3. We look
in the df = 3 row of the table and find 1.64 goes with p = 0.100 So P (T > 1.6 | df = 3) ≈ 0.1.
(The true value is a little bit greater.)

(ii) P (T < 1.6 | df = 3) = 1− P (T > 1.6 | df = 3) ≈ 0.9.

(iii) Using the df = 49 row of the t-table we find P (T > 1.68 | df = 49) = 0.05.

Now, by symmetry P (T < −1.68 | df = 49) = 0.05 and P (−1.68 < T < 1.68 | df = 49) = 0.9 .
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(iv) Using the df = 49 row of the t-table we find P (T > 1.68 | df = 49) = 0.05 and
P (T > 1.30 | df = 49) = 0.1. We can do a rough interpolation: P (T > 1.6 | df = 49) ≈ 0.06.

Now, by symmetry P (T < −1.6 | df = 49) ≈ 0.06 and P (−1.6 < T < 1.6 | df = 49) ≈ 0.88 .

(R gives 0.8839727.)

(b) (i) This is a straightforward lookup: The p = 0.05, df = 8 entry is 1.86 .

(ii) For a two-sided rejection region we need 0.1 probability in each tail. The critical value
at p = 0.1, df = 16 is 1.34. So (by symmetry) the rejection region is

(−∞,−1.34) ∪ (1.34,∞).

(iii) This is the range from q0.25 to q0.75, i.e. from critical values t0.75 to t0.25. The table only
gives critical for 0.2 and 0.3 For df = 20 these are 0.86 and 0.53. We average these to esti-
mate the 0.25 critical value as 0.7. Answer: the middle 50% of probability is approximately
between t-values −0.7 and 0.7.

(If we took into account the bell shape of the t-distribution we would estimate the 0.25
critical value as slightly closer to 0.53 than 0.86. Indeed R gives the value 0.687.)

3. (a) (i) Looking in the df = 3 row of the chi-square table we see that 1.6 is about 1/5 of
the way between the values for p = 0.7 and p = 0.5. So we approximate P (X2 > 1.6) ≈ 0.66.
(The true value is 0.6594.)

(ii) Looking in the df = 16 row of the chi-square table we see that 20 is about 1/4 of the
way between the values for p = 0.2 and p = 0.3. We estimate P (X2 > 20) = 0.25. (The
true value is 0.220)

(b) (i) This is in the table in the df = 8 row under p = 0.05. Answer: 15.51

(ii) We want the critical values for p = 0.9 and p = 0.1 from the df = 16 row of the table.

[0, 9.31] ∪ [23.54,∞).

3 Data

4. Sample mean 20/5 = 4.

12 + (
Sample variance =

−3)2 + (−1)2 + (−1)2 + 42

5− 1
= 7.

Sample standard deviation =
√

7.

Sample median = 3.

5. The first quartile is the value where 25% of the data is below it. We have 16 data
points so this is between the 4th and 5th points, i.e. between 2 and 3. It is reasonable to
take the midpoint and say 2.5.

The second quartile is between 8 and 12, we say 10.

The third quartile is 14.
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4 MLE

6. (a) The likelihood function is

100
p(data|θ) =

(
62

)
θ62(1− θ)38 = cθ62(1− θ)38.

To find the MLE we find the derivative of the log-likelihood and set it to 0.

ln(p(data|θ)) = ln(c) + 62 ln(θ) + 38 ln(1− θ).

d ln(p(data|θ))
dθ

=
62

θ
− 38

1− θ = 0.

The algebra leads to the MLE θ = 62/100 .

(b) The computation is identical to part (a). The likelihood function is

p(data|θ) =

(
n

k

)
θk(1− θ)n−k = cθk(1− θ)n−k.

To find the MLE we set the derivative of the log-likelihood and set it to 0.

ln(p(data|θ)) = ln(c) + k ln(θ) + (n− k) ln(1− θ).

d ln(p(data|θ))
dθ

=
k

θ
− n− k

1− θ = 0.

The algebra leads to the MLE θ = k/n .

7. If N < max(yi) then the likelihood p(y1, . . . , yn|N) = 0. So the likelihood function is

if
p(y1, . . . , n|N) =

{
0 N < max(yi)

y (
1
N

)n
if N ≥ max(yi)

This is maximized when N is as small as possible. Since N ≥ max(yi) the MLE is

N = max(yi).

8. The pdf of exp(λ) is p(x|λ) = λe−λx. So the likelihood and log-likelihood functions
are

p(data|λ) = λne−λ(x1+···+xn), ln(p(data|λ)) = n ln(λ)− λ xi.

Taking a derivative with respect to λ and setting it equal to 0:

∑

d ln(p(data|λ))

dλ
=
n

λ
−
∑

xi = 0 ⇒ 1

λ
=

∑
xi

= x.¯
n

So the MLE is λ = 1/x̄ .

9. P (xi|a) =

(
1− 1

a

)xi−1 1

a
. =

(
a− 1 x

a

)
i−1 1

a
.
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So, the likelihood function is

P (data|a) =

(
a− 1

a

)∑
xi−n(1 n

a

)
The log likelihood is

ln(P (data|a)) =
(∑

xi − n
)

(ln(a− 1)− ln(a))− n ln(a).

Taking the derivative

d ln(P (data|a)) 1
=

d a

(∑
xi − n

)(
a− 1

− 1

a

)
− n

a
= 0 ⇒

∑
xi
n

= a.

The maximum likelihood estimate is a = x̄ .

10. If there are n students in the room then for the data 1, 3, 7 (occuring in any order)
the likelihood is

p(data |n) =

0 for n < 71/

(
n

3

)
= 3!

n(n−1)(n−2) for n ≥ 7

Maximizing this does not require calculus. It clearly has a maximum when n is as small as
possible. Answer: n = 7 .

5 Bayesian updating: discrete prior, discrete likelihood

11. This is a Bayes’ theorem problem. The likelihoods are

P(same sex | identical) = 1 P(different sex | identical) = 0
P(same sex | fraternal) = 1/2 P(different sex | fraternal) = 1/2

The data is ‘the twins are the same sex’. We find the answer with an update table

hyp. prior likelihood unnorm. post. posterior

identical 1/3 1 1/3 1/2
fraternal 2/3 1/2 1/3 1/2

Tot. 1 2/3 1

So P(identical | same sex) = 1/2 .

12. (a) The data is 5. Let Hn be the hypothesis the die is n-sided. Here is the update
table.

hyp. prior likelihood unnorm. post. posterior

H4 1 0 0 0
H6 2 (1/6)2 2/36 0.243457
H8 10 (1/8)2 10/64 0.684723
H12 2 (1/12)2 2/144 0.060864
H20 1 (1/20)2 1/400 0.010956

Tot. 16 0.22819 1
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So P (H8|data) = 0.685.

(b) We are asked for posterior predictive probabilities. Let x be the value of the next roll.
We have to compute the total probability

p(x|data) =
∑

p(x|H)p(H|data) = likelihood× posterior.

The sum is over all hypotheses. We can organize the

∑
calculation in a table where we multiply

the posterior column by the appropriate likelihood column. The total posterior predictive
probability is the sum of the product column.

hyp. posterior likelihood post. to (i) likelihood post. to (ii)
to data (i) x = 5 (ii) x = 15

H4 0 0 0 0 0
H6 0.243457 1/6 0.04058 0 0
H8 0.684723 1/8 0.08559 0 0
H12 0.060864 1/12 0.00507 0 0
H20 0.010956 1/20 0.00055 1/20 0.00055

Tot. 0.22819 0.13179 0.00055

So, (i) p(x = 5|data) = 0.132 and (ii) p(x = 15|data) = 0.00055.

13. (a) Solution to (a) is with part (b).

(b) Let θ be the probability of the selected coin landing on heads. Given θ, we know that
the number of heads observed before the first tails, X, is a geo(θ) random variable. We
have updating table:

Hyp. Prior Likelihood Unnorm. Post. Posterior

θ = 1/2 1/2 (1/2)3(1/2) 1/25 16/43

θ = 3/4 1/2 (3/4)3(1/4) 34/2 · 44 27/43

Total 1 – 43/256 1

The prior odds for the fair coin are 1, the posterior odds are 16/27. The prior predictive
probability of heads is 0.5 · 1

2 + 0.75 · 1
2 . The posterior predictive probability of heads is

0.5 · 16
43 + 0.75 · 27 .43

6 Bayesian Updating: continuous prior, discrete likelihood

14. (a) x1 ∼ Bin(10, θ).

(b) We have prior:
f(θ) = c1θ(1− θ)

and likelihood:

10
p(x1 = 6 | θ) = c2θ

6(1− θ)4, where c2 =

(
6

)
.

The unnormalized posterior is f(θ)p(x1|θ) = c1c
7

2θ (1− θ)5. So the normalized posterior is

f(θ|x1) = c3θ
7(1− θ)5
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Since the posterior has the form of a beta(8, 6) distribution it must be a beta(8, 6) distri-
bution. We can look up the normalizing coefficient c3 = 13! .7! 5!

(c) The 50% interval is
[qbeta(0.25,8,6), qbeta(0.75,8,6)] = [0.48330, 0.66319]

The 90% interval is
[qbeta(0.05,8,6), qbeta(0.95,8,6)] = [0.35480, 0.77604]

(d) If the majority prefer Bayes then θ > 0.5. Since the 50% interval includes θ < 0.5
and the 90% interval covers a lot of θ < 0.5 we don’t have a strong case that θ > 0.5.

As a further test we compute P (θ < 0.5|x1) = pbeta(0.5,8,6) = 0.29053. So there is
still a 29% posterior probability that the majority prefers frequentist statistics.

(e) Let x2 be the result of the second poll. We want p(x2 > 5|x1). We can compute this
using the law of total probability:

p(x2 > 5|x1) =

∫ 1

p(x2 > 5|θ)p(θ|x1) dθ.
0

The two factors in the integral are:(
10
)

6 4

(
10 10

p(x2 > 5|θ) = θ (1− θ) +

)
θ7(1− θ)3 +

( )
θ8(1− θ)2(6 7 8

10
)

9 1

(
10

+ θ (1
9

− θ) + θ10(1
10

− θ)0

13!

)
p(θ|x1) = θ7(1− θ)5

7!5!

This can be computed exactly or numerically in R using the integrate() function. The
answer is P (x2 > 5 |x1 = 6) = 0.5521.

7 Bayesian Updating: discrete prior, continuous likelihood

15. For a fixed θ the likelihood is {
1/θ for x θ

f(x|θ) =
≤

0 for x ≥ θ

If Alice arrived 10 minutes late, we have table

Hypothesis Prior Likelihood for x = 1/6 Unnorm. Post Posterior

θ = 1/4 1/2 4 2 3/4

θ = 3/4 1/2 4/3 2/3 1/4

Total 1 – 8/3 1

In this case the most likely value of θ is 1/4.

If Alice arrived 30 minutes late, we have table

Hypothesis Prior Likelihood for x = 1/2 Unnorm. Post Posterior

θ = 1/4 1/2 0 0 0

θ = 3/4 1/2 4/3 2/3 1

Total 1 – 2/3 1
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In this case the most likely value of θ is 3/4.

8 Bayesian Updating: continuous prior, continuous likeli-
hood

16. (a) We have µprior = 9, σ2
prior = 1 and σ2 = 10−4. The normal-normal updating

formulas are

1
a =

σ2
prior

b =
n

σ2
, µpost =

aµprior + bx̄

a+ b
, σ2

post =
1

.
a+ b

So we compute a = 1/1, b = 10000, σ2
post = 1/(a+ b) = 1/10001 and

aµprior + bx
µpost =

a+ b
=

100009
9

10001
≈ .990

So we have posterior distribution f(θ|x = 10) ∼ N(9.99990, 0.0099).

(b) We have σ2 2
prior = 1 and σ = 10−4. The posterior variance of θ given observations

x1, . . . , xn is given by
1

1
σ2
prior

+ n
σ2

=
1

1 + n · 104

We wish to find n such that the above quantity is less than 10−6. It is not hard to see that
n = 100 is the smallest value such that this is true.

17. We have likelihood function

f(x , . . . , x |λ) =
∏5

λe−λxi = λ5e−λ(x1+x2+···+x5) 2
5 = λ5e− λ

1

i=1

So our posterior density is proportional to:

f(λ)f(x1, . . . , x5|λ) ∝ λ9e−3λ

The hint allows us to compute the normalizing factor. (Or we could recognize this as the
pdf of a Gamma random variable with parameters 10 and 3. Thus, the density is

310

f(λ|x1, . . . , x5) = λ9e−3λ.
9!

18. (a) Let X be a random decay distance.

20

Z(λ) = P (detection |λ) = P (1 ≤ X ≤ 20 |λ) =

∫
λe−λx dx = e−λ − e−20λ

1
.
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(b) Fully specifying the likelihood (remember detection only occurs for 1 ≤ x ≤ 20).

f(x and detected )
likelihood = f( |λ, detected) =

|λ
x

f(detected |λ)
=

{
λe−λx

Z(λ) for 1 ≤ x ≤ 20

0 otherwise

(c) Let Λ be the random variable for λ. Let X = 1/Λ be the random variable for the
mean decay distance.

We are given that Xbar is uniform on [5, 30] ⇒ fX(x) = 1/25.

First we find the pdf for λ, fΛ(λ), by finding and then differentiating FΛ(λ).

1
FΛ(λ) = P (Λ < λ) = P

(
Λ
>

1

λ

)
= P

(
X >

1

λ

)


0 for 1/λ > 30
30−1/λ

25 for 5 < 1/λ < 30

1 for 1/λ < 5

=


0 for λ < 1/30
30
25 − 1 for 1/30 < λ < 1/525λ

1 for λ > 1/5

Taking the derivative we get

1
fΛ(λ) = FΛ

′ (λ) =
25λ2

on
1

30
< λ <

1
.

5

λe−λxi
From part (b) the likelihood f(xi |λ) = . So the likelihood

Z(λ)

λ4e−λ
f(data |λ) =

∑
xi

Z(λ)4
=

λ4e−43λ

Z(λ)4

Now we have the prior and likelihood so we can do a Bayesian update:

Hypothesis prior likelihood posterior

λ
1

25λ2

λ4e−43λ

Z(λ)4

λ2e−43λ

c
Z(λ)4

(1/30 < λ < 1/5)

1
Odds

(
1

> 10
λ

)
= Odds

(
λ <

10

)
=
P (λ < 1/10)

P (λ > 1/10)

=

∫ 1/10

posterior dλ
1/30∫ 1/5

1/10
posterior dλ

=

∫ 1/10

1/30

λ2e−43λ

Z(λ)4
dλ∫ 1/5

1/10

λ2e−43λ

dλ
Z(λ)4

Using the R function integrate() we computed Odds
(

1 > 10λ

)
≈ 10.1.

9 NHST

19. (a) Our z-statistic is

x̄
z =

− µ
σ/
√
n

=
6.25− 4

= 1.575
10/7
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Under the null hypothesis z ∼ N(0, 1) The two-sided p-value is

p = 2× P (Z > 1.575) = 2× 0.0576 = 0.1152

The probability was computed from the z-table. We interpolated between z = 1.57 and
z = 1.58 Because p > α we do not reject H0.

(b) The null pdf is standard normal as shown. The red shaded area is over the rejection
region. The area used to compute significance is shown in red. The area used to compute
the p-value is shown with blue stripes. Note, the z-statistic outside the rejection region
corresponds to the blue completely covering the red.

z

f(z|H0) ∼ N(0, 1)

z.975 = −1.96 z.025 = 1.96

reject H0 reject H0do not reject H0

z = 1.575

20. (a) Our t-statistic is
x̄− µ
s/
√
n

=
6.25− 4

= 2.625
6/7

Under the null hypothesis t ∼ t48. Using the t-table we find the two-sided p-value is

p = 2× P (t > 2.625) < 2× 0.005 = 0.01

Because p < α we reject H0.

(b) The null pdf is a t-distribution as shown. The rejection region is shown. The area
used to compute significance is shown in red. The area used to compute the p-value is
shown with blue stripes. Note, the t-statistic is inside the rejection region corresponds.
This corresponds to the red completely covering the blue. The critical values for t48 we’re
looked up in the table.

t

f(t|H0) ∼ t48

t.975 = −2.011 t.025 = 2.011

reject H0 reject H0do not reject H0

t = 2.625
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21. See the psets 7 and 8.

22. Probability, MLE, goodness of fit
(a) This is a binomial distribution. Let θ be the Bernoulli probability of success in one
test. (

12
p(x = k) =

)
θk(1− θ)1−k, for k = 0, 1, . . . , 12.

k

(b) The likelihood function for the combined data from all 60 centers is

12 12 12
p(x 1

1, x2, . . . , x | θ) =

( )
θx60 (1− θ)12−x1 θx2(1 θ)12−x2

x1

(
θx60(1 θ)12−x60

x2

)
− · · ·

(
x60

)
−

= c θ
∑
xi(1− θ)

∑
12−xi

To find the∑maximum we use the log likelihood. At the same time we make the substitution
60 · x̄ for xi.

ln(p(data | θ)) = ln(c) + 60x̄ ln(θ) + 60(12− x̄) ln(1− θ).

Now we set the derivative to 0:

d ln(p(data | θ))
d θ

=
60x̄

θ
− 60(12− x̄)

= 0.
1− θ

Solving for θ we get
x̄

θ̂ = .
12

(c) The sample mean is

x̄ =

∑
(count× x)∑

counts

=
4 · 0 + 15 · 1 + 17 · 2 + 10 · 3 + 8 · 4 + 6 · 5

60
= 2.35

ˆ(d) Just plug x̄ = 2.35 into the formula from part (b): θ = x/¯ 12 = 2.35/12 = 0.1958

(e) There were 60 trials in all. Our hypotheses are:

H0 = the probability of success is the same at all centers. (This determines the probabilities
of the counts in each cell of our table.)
HA = the probabilities for the cell counts can be anything as long as they sum to 1, i.e. x
follows an arbitrary multinomial distribution.

ˆUsing the the value for θ in part (d) we have the following table. The probabilities are
computed using R, the expected counts are just the probabilities times 60. The components
of X2 are computed using the formula X2

i = (Ei −Oi)2/Ei.

x 0 1 2 3 4 5

p(x) 0.0731 0.2137 0.2863 0.2324 0.1273 0.0496

Observed 4 15 17 10 8 6

Expected 4.3884 12.8241 17.1763 13.9428 7.63962 2.9767

X2
i 0.0344 0.3692 0.0018 1.1149 0.0170 3.0707
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The χ2 statistic is X2 =
∑
X2
i = 4.608. There are 6 cells, so 4 degrees of freedom. The

p-value is
p = 1-pchisq(4.608, 4) = 0.3299

With this p-value we do not reject H0.

The reason the degrees of freedom is two less than the number of cells is that there are two
constraints on assigning cell counts assuming HA but consistent with the statistics used to
compute the expected counts. They are the total number of observations = 60, and the
grand mean x = 2.35.
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