Exam 1 Practice Questions II –solutions, 18.05, Spring 2014

Note: This is a set of practice problems for exam 1. The actual exam will be much shorter.

1. We build a full-house in stages and count the number of ways to make each stage: Stage 1. Choose the rank of the pair: $\binom{13}{1}$.

Stage 2. Choose the pair from that rank, i.e. pick 2 of 4 cards: $\binom{4}{2}$.

Stage 3. Choose the rank of the triple (from the remaining 12 ranks): $\binom{12}{1}$.

Stage 4. Choose the triple from that rank: $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$. Number of ways to get a full-house: $\binom{13}{1}\binom{4}{2}\binom{12}{1}\binom{4}{3}$ Number of ways to pick any 5 cards out of 52: $\binom{52}{5}$ Probability of a full house: $\frac{\binom{13}{1}\binom{4}{2}\binom{12}{1}\binom{14}{3}}{\binom{52}{5}} \approx 0.00144$

2. (a) There are $\binom{20}{3}$ ways to choose the 3 people to set the table, then $\binom{17}{2}$ ways to choose the 2 people to boil water, and $\binom{15}{6}$ ways to choose the people to make scones. So the total number of ways to choose people for these tasks is

$$\binom{20}{3}\binom{17}{2}\binom{15}{6} = \frac{20!}{3!\,17!} \cdot \frac{17!}{2!\,15!} \cdot \frac{15!}{6!\,9!} = \frac{20!}{3!\,2!\,6!\,9!} = 775975200.$$

(b) The number of ways to choose 10 of the 20 people is $\binom{20}{10}$ The number of ways to choose 10 people from the 14 Republicans is $\binom{14}{10}$. So the probability that you only choose 10 Republicans is

$$\frac{\binom{14}{10}}{\binom{20}{10}} = \frac{\frac{14!}{10!\,4!}}{\frac{20!}{10!\,10!}} \approx 0.00542$$

Alternatively, you could choose the 10 people in sequence and say that there is a 14/20probability that the first person is a Republican, then a 13/19 probability that the second one is, a 12/18 probability that third one is, etc. This gives a probability of

 $\frac{14}{20} \cdot \frac{13}{19} \cdot \frac{12}{18} \cdot \frac{11}{17} \cdot \frac{10}{16} \cdot \frac{9}{15} \cdot \frac{8}{14} \cdot \frac{7}{13} \cdot \frac{6}{12} \cdot \frac{5}{11}.$

(You can check that this is the same as the other answer given above.)

(c) You can choose 1 Democrat in $\binom{6}{1} = 6$ ways, and you can choose 9 Republicans in $\binom{14}{9}$ ways, so the probability equals

$$\frac{6 \cdot \binom{14}{9}}{\binom{20}{10}} = \frac{6 \cdot \frac{14!}{9! \, 5!}}{\frac{20!}{10! \, 10!}} = \frac{6 \cdot 14! \, 10! \, 10!}{9! \, 5! \, 20!}.$$

3. D is the disjoint union of $D \cap C$ and $D \cap C^c$.

So, $P(D \cap C) + P(D \cap C^c) = P(D)$ $\Rightarrow P(D \cap C^c) = P(D) - P(D \cap C) = 0.45 - 0.1 = 0.35.$ (We never use P(C) = 0.25.)

4. Let H_i be the event that the i^{th} hand has one king. We have the conditional probabilities

$$P(H_1) = \frac{\binom{4}{1}\binom{48}{12}}{\binom{52}{13}}; \quad P(H_2|H_1) = \frac{\binom{3}{1}\binom{36}{12}}{\binom{39}{13}}; \quad P(H_3|H_1 \cap H_2) = \frac{\binom{2}{1}\binom{24}{12}}{\binom{26}{13}}$$

 $P(H_4|H_1 \cap H_2 \cap H_3) = 1$

$$P(H_1 \cap H_2 \cap H_3 \cap H_4) = P(H_4 | H_1 \cap H_2 \cap H_3) P(H_3 | H_1 \cap H_2) P(H_2 | H_1) P(H_1)$$
$$= \frac{\binom{2}{1}\binom{24}{12}\binom{3}{1}\binom{36}{12}\binom{4}{1}\binom{48}{12}}{\binom{26}{13}\binom{39}{13}\binom{52}{13}}.$$

5. The following tree shows the setting. $Stay_1$ means the contestant was allowed to stay during the first episode and $stay_2$ means the they were allowed to stay during the second.

Let's name the relevant events:

B = the contestant is bribing the judges

H = the contestant is honest (not bribing the judges)

 S_1 = the contestant was allowed to stay during the first episode

 S_2 = the contestant was allowed to stay during the second episode

 L_1 = the contestant was asked to leave during the first episode

 L_2 = the contestant was asked to leave during the second episode

(a) We first compute $P(S_1)$ using the law of total probability.

$$P(S_1) = P(S_1|B)P(B) + P(S_1|H)P(H) = 1 \cdot \frac{1}{4} + \frac{1}{3} \cdot \frac{3}{4} = \frac{1}{2}$$

We therefore have (by Bayes' rule) $P(B|S_1) = P(S_1|B)\frac{P(B)}{P(S_1)} = 1 \cdot \frac{1/4}{1/2} = \frac{1}{2}.$

(b) Using the tree we have the total probability of S_2 is

$$P(S_2) = \frac{1}{4} + \frac{3}{4} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3}$$

(c) We want to compute $P(L_2|S_1) = \frac{P(L_2 \cap S_1)}{P(S_1)}$.

From the calculation we did in part (a), $P(S_1) = 1/2$. For the numerator, we have (see the tree)

$$P(L_2 \cap S_1) = P(L_2 \cap S_1|B)P(B) + P(L_2 \cap S_1|H)P(H) = 0 \cdot \frac{1}{3} + \frac{2}{9} \cdot \frac{3}{4} = \frac{1}{6}$$

Therefore $P(L_2|S_1) = \frac{1/6}{1/2} = \frac{1}{3}.$

6. You should write this out in a tree! (For example, see the solution to the next problem.)

We compute all the pieces needed to apply Bayes' rule. We're given $P(T|D) = 0.9 \Rightarrow P(T^c|D) = 0.1, \quad P(T|D^c) = 0.01 \Rightarrow P(T^c|D^c) = 0.99.$ $P(D) = 0.0005 \Rightarrow P(D^c) = 1 - P(D) = 0.9995.$

We use the law of total probability to compute P(T):

$$P(T) = P(T|D) P(D) + P(T|D^{c}) P(D^{c}) = 0.9 \cdot 0.0005 + 0.01 \cdot 0.9995 = 0.010445$$

Now we can use Bayes' rule to answer the questions:

$$P(D|T) = \frac{P(T|D) P(D)}{P(T)} = \frac{0.9 \times 0.0005}{0.010445} = 0.043$$
$$P(D|T^c) = \frac{P(T^c|D) P(D)}{P(T^c)} = \frac{0.1 \times 0.0005}{0.989555} = 5.0 \times 10^{-5}$$

7. By the mutual independence we have

$$P(A \cap B \cap C) = P(A)P(B)P(C) = 0.06 \qquad P(A \cap B) = P(A)P(B) = 0.12$$
$$P(A \cap C) = P(A)P(C) = 0.15 \qquad P(B \cap C) = P(B)P(C) = 0.2$$

We show this in the following Venn diagram

Note that, for instance, $P(A \cap B)$ is split into two pieces. One of the pieces is $P(A \cap B \cap C)$ which we know and the other we compute as $P(A \cap B) - P(A \cap B \cap C) = 0.12 - 0.06 = 0.06$. The other intersections are similar.

We can read off the asked for probabilities from the diagram.

(i) $P(A \cap B \cap C^c) = 0.06$ (ii) $P(A \cap B^c \cap C) = 0.09$ (iii) $P(A^c \cap B \cap C) = 0.14$.

8. Use
$$\operatorname{Var}(X) = E(X^2) - E(X)^2 \Rightarrow 2 = E(X^2) - 25 \Rightarrow E(X^2) = 27.$$

9. (a) It is easy to see that (e.g. look at the probability tree) $P(2^k) = \frac{1}{2^{k+1}}$.

(b)
$$E(X) = \sum_{k=0}^{\infty} 2^k \frac{1}{2^{k+1}} = \sum \frac{1}{2} = \infty$$
. Technically, $E(X)$ is undefined in this case.

(c) Technically, E(X) is undefined in this case. But the value of ∞ tells us what is wrong with the scheme. Since the average last bet is infinite, I need to have an infinite amount of money in reserve.

This problem and solution is often referred to as the St. Petersburg paradox

10. (a) We have $\operatorname{cdf} \operatorname{of} X$,

$$F_X(x) = \int_0^x \lambda e^{-\lambda x} dx = 1 - e^{-\lambda x}$$

Now for $y \ge 0$, we have

(b)

$$F_Y(y) = P(Y \le y) = P(X^2 \le y) = P(X \le \sqrt{y}) = 1 - e^{-\lambda\sqrt{y}}.$$

Differentiating $F_Y(y)$ with respect to y, we have

$$f_Y(y) = \frac{\lambda}{2} y^{-\frac{1}{2}} \mathrm{e}^{-\lambda\sqrt{y}}.$$

11. (a) Note: Y = 1 when X = 1 or X = -1, so

$$P(Y = 1) = P(X = 1) + P(X = -1).$$

Values y of Y
 0
 1
 4

 pmf
$$p_Y(y)$$
 3/15
 6/15
 6/15

(b) and (c) To distinguish the distribution functions we'll write F_x and F_Y .

Using the tables in part (a) and the definition $F_X(a) = P(X \le a)$ etc. we get

a	-1.5	3/4	7/8	1	1.5	5
$F_X(a)$	1/15	6/15	6/15	10/15	10/15	1
$F_Y(a)$	0	3/15	3/15	9/15	9/15	1

12.

- (i) yes, discrete, (ii) no, (iii) no, (iv) no, (v) yes, continuous
- (vi) no (vii) yes, continuous, (viii) yes, continuous.

13. Normal Distribution: (a) We have

$$F_X(x) = P(X \le x) = P(3Z + 1 \le x) = P(Z \le \frac{x-1}{3}) = \Phi\left(\frac{x-1}{3}\right).$$

(b) Differentiating with respect to x, we have

$$f_X(x) = \frac{\mathrm{d}}{\mathrm{dx}} F_X(x) = \frac{1}{3} \phi\left(\frac{x-1}{3}\right).$$

Since $\phi(x) = (2\pi)^{-\frac{1}{2}} e^{-\frac{x^2}{2}}$, we conclude

$$f_X(x) = \frac{1}{3\sqrt{2\pi}} e^{-\frac{(x-1)^2}{2\cdot 3^2}},$$

which is the probability density function of the N(1,9) distribution. Note: The arguments in (a) and (b) give a proof that 3Z+1 is a normal random variable with mean 1 and variance 9. See Problem Set 3, Question 5.

(c) We have

$$P(-1 \le X \le 1) = P\left(-\frac{2}{3} \le Z \le 0\right) = \Phi(0) - \Phi\left(-\frac{2}{3}\right) \approx 0.2475$$

(d) Since E(X) = 1, Var(X) = 9, we want $P(-2 \le X \le 4)$. We have

$$P(-2 \le X \le 4) = P(-3 \le 3Z \le 3) = P(-1 \le Z \le 1) \approx 0.68.$$

14. The density for this distribution is $f(x) = \lambda e^{-\lambda x}$. We know (or can compute) that the distribution function is $F(a) = 1 - e^{-\lambda a}$. The median is the value of a such that F(a) = .5. Thus, $1 - e^{-\lambda a} = 0.5 \Rightarrow 0.5 = e^{-\lambda a} \Rightarrow \log(0.5) = -\lambda a \Rightarrow \boxed{a = \log(2)/\lambda}$.

15. (a) First note by linearity of expectation we have E(X + s) = E(X) + s, thus X + s - E(X + s) = X - E(X).

Likewise Y + u - E(Y + u) = Y - E(Y).

Now using the definition of covariance we get

$$Cov(X + s, Y + u) = E((X + s - E(X + s)) \cdot (Y + u - E(Y + u)))$$

= $E((X - E(X)) \cdot (Y - E(Y)))$
= $Cov(X, Y).$

(b) This is very similar to part (a).

We know E(rX) = rE(X), so rX - E(rX) = r(X - E(X)). Likewise tY - E(tY) =s(Y - E(Y)). Once again using the definition of covariance we get

$$\begin{aligned} \operatorname{Cov}(rX, tY) &= E((rX - E(rX))(tY - E(tY))) \\ &= E(rt(X - E(X))(Y - E(Y))) \\ &\quad (\text{Now we use linearity of expectation to pull out the factor of } rt) \\ &= rtE((X - E(X)(Y - E(Y)))) \\ &= rt\operatorname{Cov}(X, Y) \end{aligned}$$

(c) This is more of the same. We give the argument with far fewer algebraic details

$$Cov(rX + s, tY + u) = Cov(rX, tY)$$
(by part (a))
= $rtCov(X, Y)$ (by part (b))

16. (Another Arithmetic Puzzle)

(a) S = X + Y takes values 0, 1, 2 and T = X - Y takes values -1, 0, 1.

First we make two tables: the joint probability table for X and Y and a table given the values (S,T) corresponding to values of (X,Y), e.g. (X,Y) = (1,1) corresponds to (S,T) = (2,0).

Í	$X \setminus^Y$	0	1				$X \setminus Y$	0	1	
ĺ	0	1/4	1/4				0	0,0	0,-1	
Ì	1	1/4	1/4				1	1,1	2,0	
ì	nahiliti	es of	X and	V	Values	of (S_{i})	\overline{T} corr	esnon	ding to	X

Joint probabilities of X and Y

Values of (S, T) corresponding to X and Y

We can use the two tables above to write the joint probability table for S and T. The marginal probabilities are given in the table.

$S \setminus^T$	-1	0	1	
0	1/4	1/4	0	1/2
1	0	0	1/4	1/4
2	0	0	1/4	1/4
	1/4	1/4	1/2	1

Joint and marginal probabilities of S and T

(b) No probabilities in the table are the product of the corresponding marginal probabilities. (This is easiest to see for the 0 entries.) So, S and T are not independent

(a) X and Y are independent, so the table is computed from the product of the 17. known marginal probabilities. Since they are independent, Cov(X, Y) = 0.

$_{Y} \setminus^{X}$	0	1	P_Y
0	1/8	1/8	1/4
1	1/4	1/4	1/2
2	1/8	1/8	1/4
P_X	1/2	1/2	1

(b) The sample space is $\Omega = \{\text{HHH}, \text{HHT}, \text{HTH}, \text{HTT}, \text{THH}, \text{THT}, \text{TTH}, \text{TTT}\}.$

$P(X = 0, F = 0) = P(\{TTH, TTT\}) = 1/4.$				
$P(X = 0, F = 1) = P(\{THH, THT\}) = 1/4.$	$_{F} \backslash^{X}$	0	1	P_F
P(X = 0, F = 2) = 0.	0	1/4	0	1/4
P(X = 1, F = 0) = 0.	1	1/4	1/4	1/2
$P(X = 1, F = 1) = P(\{HTH, HTT\}) = 1/4.$	2	0	1/4	1/4
$P(X = 1, F = 2) = P(\{HHH, HHT\}) = 1/4.$	P_X	1/2	1/2	1

$$Cov(X, F) = E(XF) - E(X)E(F).$$

$$E(X) = 1/2, \quad E(F) = 1, \quad E(XF) = \sum x_i y_j p(x_i, y_j) = 3/4.$$

$$\Rightarrow \quad Cov(X, F) = 3/4 - 1/2 = \boxed{1/4.}$$

18. (More Central Limit Theorem)

Let X_j be the IQ of a randomly selected person. We are given $E(X_j) = 100$ and $\sigma_{X_j} = 15$. Let \overline{X} be the average of the IQ's of 100 randomly selected people. Then we know

$$E(\overline{X}) = 100$$
 and $\sigma_{\overline{X}} = 15/\sqrt{100} = 1.5.$

The problem asks for $P(\overline{X} > 115)$. Standardizing we get $P(\overline{X} > 115) \approx P(Z > 10)$. This is effectively 0. 18.05 Introduction to Probability and Statistics Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.