Exam 1 Practice Questions II -solutions, 18.05, Spring 2014

Note: This is a set of practice problems for exam 1. The actual exam will be much shorter.

1. We build a full-house in stages and count the number of ways to make each stage:

Stage 1. Choose the rank of the pair: $\binom{13}{1}$.
Stage 2. Choose the pair from that rank, i.e. pick 2 of 4 cards: $\binom{4}{2}$.
Stage 3. Choose the rank of the triple (from the remaining 12 ranks): $\binom{12}{1}$.
Stage 4. Choose the triple from that rank: $\binom{4}{3}$.
Number of ways to get a full-house: $\binom{13}{1}\binom{4}{2}\binom{12}{1}\binom{4}{3}$
Number of ways to pick any 5 cards out of 52 : $\binom{52}{5}$
Probability of a full house: $\frac{\binom{13}{1}\binom{4}{2}\binom{12}{1}\binom{14}{3}}{\binom{52}{5}} \approx 0.00144$
2. (a) There are $\binom{20}{3}$ ways to choose the 3 people to set the table, then $\binom{17}{2}$ ways to choose the 2 people to boil water, and $\binom{15}{6}$ ways to choose the people to make scones. So the total number of ways to choose people for these tasks is

$$
\binom{20}{3}\binom{17}{2}\binom{15}{6}=\frac{20!}{3!17!} \cdot \frac{17!}{2!15!} \cdot \frac{15!}{6!9!}=\frac{20!}{3!2!6!9!}=775975200
$$

(b) The number of ways to choose 10 of the 20 people is $\binom{20}{10}$ The number of ways to choose 10 people from the 14 Republicans is $\binom{14}{10}$. So the probability that you only choose 10 Republicans is

$$
\frac{\binom{14}{10}}{\binom{20}{10}}=\frac{\frac{14!}{10!4!}}{\frac{20!}{10!10!}} \approx 0.00542
$$

Alternatively, you could choose the 10 people in sequence and say that there is a $14 / 20$ probability that the first person is a Republican, then a $13 / 19$ probability that the second one is, a $12 / 18$ probability that third one is, etc. This gives a probability of

$$
\frac{14}{20} \cdot \frac{13}{19} \cdot \frac{12}{18} \cdot \frac{11}{17} \cdot \frac{10}{16} \cdot \frac{9}{15} \cdot \frac{8}{14} \cdot \frac{7}{13} \cdot \frac{6}{12} \cdot \frac{5}{11} .
$$

(You can check that this is the same as the other answer given above.)
(c) You can choose 1 Democrat in $\binom{6}{1}=6$ ways, and you can choose 9 Republicans in $\binom{14}{9}$ ways, so the probability equals

$$
\frac{6 \cdot\binom{14}{9}}{\binom{20}{10}}=\frac{6 \cdot \frac{14!}{95!}}{\frac{20!}{10!10!}}=\frac{6 \cdot 14!10!10!}{9!5!20!} .
$$

3. D is the disjoint union of $D \cap C$ and $D \cap C^{c}$.

So, $P(D \cap C)+P\left(D \cap C^{c}\right)=P(D)$
$\Rightarrow P\left(D \cap C^{c}\right)=P(D)-P(D \cap C)=0.45-0.1=0.35$.
(We never use $P(C)=0.25$.)

4. Let H_{i} be the event that the $i^{t h}$ hand has one king. We have the conditional probabilities

$$
P\left(H_{1}\right)=\frac{\binom{4}{1}\binom{48}{12}}{\binom{52}{13}} ; \quad P\left(H_{2} \mid H_{1}\right)=\frac{\binom{3}{1}\binom{36}{12}}{\binom{39}{13}} ; \quad P\left(H_{3} \mid H_{1} \cap H_{2}\right)=\frac{\binom{2}{1}\binom{24}{12}}{\binom{26}{13}}
$$

$P\left(H_{4} \mid H_{1} \cap H_{2} \cap H_{3}\right)=1$

$$
\begin{aligned}
P\left(H_{1} \cap H_{2} \cap H_{3} \cap H_{4}\right) & =P\left(H_{4} \mid H_{1} \cap H_{2} \cap H_{3}\right) P\left(H_{3} \mid H_{1} \cap H_{2}\right) P\left(H_{2} \mid H_{1}\right) P\left(H_{1}\right) \\
& =\frac{\binom{2}{1}\binom{24}{12}\binom{3}{1}\binom{36}{12}\binom{4}{1}\binom{48}{12}}{\binom{26}{13}\binom{39}{13}\binom{52}{13}} .
\end{aligned}
$$

5. The following tree shows the setting. Stay ${ }_{1}$ means the contestant was allowed to stay during the first episode and stay 2 means the they were allowed to stay during the second.

Let's name the relevant events:
$B=$ the contestant is bribing the judges
$H=$ the contestant is honest (not bribing the judges)
$S_{1}=$ the contestant was allowed to stay during the first episode
$S_{2}=$ the contestant was allowed to stay during the second episode
$L_{1}=$ the contestant was asked to leave during the first episode
$L_{2}=$ the contestant was asked to leave during the second episode
(a) We first compute $P\left(S_{1}\right)$ using the law of total probability.

$$
P\left(S_{1}\right)=P\left(S_{1} \mid B\right) P(B)+P\left(S_{1} \mid H\right) P(H)=1 \cdot \frac{1}{4}+\frac{1}{3} \cdot \frac{3}{4}=\frac{1}{2} .
$$

We therefore have (by Bayes' rule) $P\left(B \mid S_{1}\right)=P\left(S_{1} \mid B\right) \frac{P(B)}{P\left(S_{1}\right)}=1 \cdot \frac{1 / 4}{1 / 2}=\frac{1}{2}$.
(b) Using the tree we have the total probability of S_{2} is

$$
P\left(S_{2}\right)=\frac{1}{4}+\frac{3}{4} \cdot \frac{1}{3} \cdot \frac{1}{3}=\frac{1}{3}
$$

(c) We want to compute $P\left(L_{2} \mid S_{1}\right)=\frac{P\left(L_{2} \cap S_{1}\right)}{P\left(S_{1}\right)}$.

From the calculation we did in part (a), $P\left(S_{1}\right)=1 / 2$. For the numerator, we have (see the tree)

$$
P\left(L_{2} \cap S_{1}\right)=P\left(L_{2} \cap S_{1} \mid B\right) P(B)+P\left(L_{2} \cap S_{1} \mid H\right) P(H)=0 \cdot \frac{1}{3}+\frac{2}{9} \cdot \frac{3}{4}=\frac{1}{6}
$$

Therefore $P\left(L_{2} \mid S_{1}\right)=\frac{1 / 6}{1 / 2}=\frac{1}{3}$.
6. You should write this out in a tree! (For example, see the solution to the next problem.)
We compute all the pieces needed to apply Bayes' rule. We're given
$P(T \mid D)=0.9 \Rightarrow P\left(T^{c} \mid D\right)=0.1, \quad P\left(T \mid D^{c}\right)=0.01 \Rightarrow P\left(T^{c} \mid D^{c}\right)=0.99$.
$P(D)=0.0005 \Rightarrow P\left(D^{c}\right)=1-P(D)=0.9995$.
We use the law of total probability to compute $P(T)$:

$$
P(T)=P(T \mid D) P(D)+P\left(T \mid D^{c}\right) P\left(D^{c}\right)=0.9 \cdot 0.0005+0.01 \cdot 0.9995=0.010445
$$

Now we can use Bayes' rule to answer the questions:

$$
\begin{aligned}
P(D \mid T) & =\frac{P(T \mid D) P(D)}{P(T)}=\frac{0.9 \times 0.0005}{0.010445}=0.043 \\
P\left(D \mid T^{c}\right) & =\frac{P\left(T^{c} \mid D\right) P(D)}{P\left(T^{c}\right)}=\frac{0.1 \times 0.0005}{0.989555}=5.0 \times 10^{-5}
\end{aligned}
$$

7. By the mutual independence we have

$$
\begin{aligned}
P(A \cap B \cap C) & =P(A) P(B) P(C)=0.06 & & P(A \cap B)=P(A) P(B)=0.12 \\
P(A \cap C) & =P(A) P(C)=0.15 & & P(B \cap C)=P(B) P(C)=0.2
\end{aligned}
$$

We show this in the following Venn diagram

Note that, for instance, $P(A \cap B)$ is split into two pieces. One of the pieces is $P(A \cap B \cap C)$ which we know and the other we compute as $P(A \cap B)-P(A \cap B \cap C)=0.12-0.06=0.06$. The other intersections are similar.

We can read off the asked for probabilities from the diagram.
(i) $P\left(A \cap B \cap C^{c}\right)=0.06$
(ii) $P\left(A \cap B^{c} \cap C\right)=0.09$
(iii) $P\left(A^{c} \cap B \cap C\right)=0.14$.
8. Use $\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2} \Rightarrow 2=E\left(X^{2}\right)-25 \Rightarrow E\left(X^{2}\right)=27$.
9. (a) It is easy to see that (e.g. look at the probability tree) $P\left(2^{k}\right)=\frac{1}{2^{k+1}}$.
(b) $\quad E(X)=\sum_{k=0}^{\infty} 2^{k} \frac{1}{2^{k+1}}=\sum \frac{1}{2}=\infty$. Technically, $E(X)$ is undefined in this case.
(c) Technically, $E(X)$ is undefined in this case. But the value of ∞ tells us what is wrong with the scheme. Since the average last bet is infinite, I need to have an infinite amount of money in reserve.

This problem and solution is often referred to as the $\mathbf{S t}$. Petersburg paradox
10. (a) We have cdf of X,

$$
F_{X}(x)=\int_{0}^{x} \lambda \mathrm{e}^{-\lambda x} d x=1-\mathrm{e}^{-\lambda x}
$$

Now for $y \geq 0$, we have
(b)

$$
F_{Y}(y)=P(Y \leq y)=P\left(X^{2} \leq y\right)=P(X \leq \sqrt{y})=1-\mathrm{e}^{-\lambda \sqrt{y}}
$$

Differentiating $F_{Y}(y)$ with respect to y, we have

$$
f_{Y}(y)=\frac{\lambda}{2} y^{-\frac{1}{2}} \mathrm{e}^{-\lambda \sqrt{y}}
$$

11. (a) Note: $Y=1$ when $X=1$ or $X=-1$, so

$$
\begin{aligned}
& P(Y=1)=P(X=1)+P(X=-1) . \\
& \text { Values } y \text { of } Y \\
& \hline \operatorname{pmf} p_{Y}(y) \\
& 3 / 15
\end{aligned} \frac{6 / 15}{} 6 / 15
$$

(b) and (c) To distinguish the distribution functions we'll write F_{x} and F_{Y}.

Using the tables in part (a) and the definition $F_{X}(a)=P(X \leq a)$ etc. we get

a	-1.5	$3 / 4$	$7 / 8$	1	1.5	5
$F_{X}(a)$	$1 / 15$	$6 / 15$	$6 / 15$	$10 / 15$	$10 / 15$	1
$F_{Y}(a)$	0	$3 / 15$	$3 / 15$	$9 / 15$	$9 / 15$	1

12.

(i) yes, discrete, (ii) no, (iii) no, (iv) no, (v) yes, continuous
(vi) no (vii) yes, continuous, (viii) yes, continuous.
13. Normal Distribution: (a) We have

$$
F_{X}(x)=P(X \leq x)=P(3 Z+1 \leq x)=P\left(Z \leq \frac{x-1}{3}\right)=\Phi\left(\frac{x-1}{3}\right) .
$$

(b) Differentiating with respect to x, we have

$$
f_{X}(x)=\frac{\mathrm{d}}{\mathrm{dx}} F_{X}(x)=\frac{1}{3} \phi\left(\frac{x-1}{3}\right) .
$$

Since $\phi(x)=(2 \pi)^{-\frac{1}{2}} \mathrm{e}^{-\frac{x^{2}}{2}}$, we conclude

$$
f_{X}(x)=\frac{1}{3 \sqrt{2 \pi}} \mathrm{e}^{-\frac{(x-1)^{2}}{2 \cdot 3^{2}}},
$$

which is the probability density function of the $N(1,9)$ distribution. Note: The arguments in (a) and (b) give a proof that $3 Z+1$ is a normal random variable with mean 1 and variance 9. See Problem Set 3, Question 5.
(c) We have

$$
P(-1 \leq X \leq 1)=P\left(-\frac{2}{3} \leq Z \leq 0\right)=\Phi(0)-\Phi\left(-\frac{2}{3}\right) \approx 0.2475
$$

(d) Since $E(X)=1, \operatorname{Var}(X)=9$, we want $P(-2 \leq X \leq 4)$. We have

$$
P(-2 \leq X \leq 4)=P(-3 \leq 3 Z \leq 3)=P(-1 \leq Z \leq 1) \approx 0.68 .
$$

14. The density for this distribution is $f(x)=\lambda \mathrm{e}^{-\lambda x}$. We know (or can compute) that the distribution function is $F(a)=1-\mathrm{e}^{-\lambda a}$. The median is the value of a such that $F(a)=.5$. Thus, $1-\mathrm{e}^{-\lambda a}=0.5 \Rightarrow 0.5=\mathrm{e}^{-\lambda a} \Rightarrow \log (0.5)=-\lambda a \Rightarrow a=\log (2) / \lambda$.
15. (a) First note by linearity of expectation we have $E(X+s)=E(X)+s$, thus $X+s-E(X+s)=X-E(X)$.
Likewise $Y+u-E(Y+u)=Y-E(Y)$.
Now using the definition of covariance we get

$$
\begin{aligned}
\operatorname{Cov}(X+s, Y+u) & =E((X+s-E(X+s)) \cdot(Y+u-E(Y+u))) \\
& =E((X-E(X)) \cdot(Y-E(Y))) \\
& =\operatorname{Cov}(X, Y) .
\end{aligned}
$$

(b) This is very similar to part (a).

We know $E(r X)=r E(X)$, so $r X-E(r X)=r(X-E(X))$. Likewise $t Y-E(t Y)=$ $s(Y-E(Y))$. Once again using the definition of covariance we get

$$
\begin{aligned}
\operatorname{Cov}(r X, t Y) & =E((r X-E(r X))(t Y-E(t Y))) \\
& =E(r t(X-E(X))(Y-E(Y)))
\end{aligned}
$$

(Now we use linearity of expectation to pull out the factor of $r t$)
$=r t E((X-E(X)(Y-E(Y))))$

$$
=r t \operatorname{Cov}(X, Y)
$$

(c) This is more of the same. We give the argument with far fewer algebraic details

$$
\begin{aligned}
\operatorname{Cov}(r X+s, t Y+u) & =\operatorname{Cov}(r X, t Y)(\text { by part (a) }) \\
& =r t \operatorname{Cov}(X, Y)(\text { by part }(\mathrm{b}))
\end{aligned}
$$

16. (Another Arithmetic Puzzle)
(a) $S=X+Y$ takes values $0,1,2$ and $T=X-Y$ takes values $-1,0,1$.

First we make two tables: the joint probability table for X and Y and a table given the values (S, T) corresponding to values of (X, Y), e.g. $(X, Y)=(1,1)$ corresponds to $(S, T)=(2,0)$.

$x \backslash^{Y}$	0	1
0	$1 / 4$	$1 / 4$
1	$1 / 4$	$1 / 4$

Joint probabilities of X and Y

$x \backslash^{Y}$	0	1
0	0,0	$0,-1$
1	1,1	2,0

Values of (S, T) corresponding to X and Y

We can use the two tables above to write the joint probability table for S and T. The marginal probabilities are given in the table.

$S \backslash^{T}$	-1	0	1	
0	1/4	1/4	0	1/2
1	0	0	1/4	1/4
2	0	0	1/4	1/4
	1/4	1/4	1/2	

Joint and marginal probabilities of S and T
(b) No probabilities in the table are the product of the corresponding marginal probabilities. (This is easiest to see for the 0 entries.) So, S and T are not independent
17. (a) X and Y are independent, so the table is computed from the product of the known marginal probabilities. Since they are independent, $\operatorname{Cov}(X, Y)=0$.

Y^{X}	0	1	P_{Y}
0	$1 / 8$	$1 / 8$	$1 / 4$
1	$1 / 4$	$1 / 4$	$1 / 2$
2	$1 / 8$	$1 / 8$	$1 / 4$
P_{X}	$1 / 2$	$1 / 2$	1

(b) The sample space is $\Omega=\{$ HHH, HHT, HTH, HTT, THH, THT, TTH, TTT $\}$.
$P(X=0, F=0)=P(\{T T H, T T T\})=1 / 4$.
$P(X=0, F=1)=P(\{T H H, T H T\})=1 / 4$.
$P(X=0, F=2)=0$.
$P(X=1, F=0)=0$.
$P(X=1, F=1)=P(\{H T H, H T T\})=1 / 4$.
$P(X=1, F=2)=P(\{H H H, H H T\})=1 / 4$.

${ }_{F} \backslash^{X}$	0	1	P_{F}
0	$1 / 4$	0	$1 / 4$
1	$1 / 4$	$1 / 4$	$1 / 2$
2	0	$1 / 4$	$1 / 4$
P_{X}	$1 / 2$	$1 / 2$	1

$\operatorname{Cov}(X, F)=E(X F)-E(X) E(F)$.
$E(X)=1 / 2, \quad E(F)=1, E(X F)=\sum x_{i} y_{j} p\left(x_{i}, y_{j}\right)=3 / 4$.
$\Rightarrow \operatorname{Cov}(X, F)=3 / 4-1 / 2=1 / 4$.

18. (More Central Limit Theorem)

Let X_{j} be the IQ of a randomly selected person. We are given $E\left(X_{j}\right)=100$ and $\sigma_{X_{j}}=15$.
Let \bar{X} be the average of the IQ's of 100 randomly selected people. Then we know

$$
E(\bar{X})=100 \quad \text { and } \quad \sigma_{\bar{X}}=15 / \sqrt{100}=1.5 .
$$

The problem asks for $P(\bar{X}>115)$. Standardizing we get $P(\bar{X}>115) \approx P(Z>10)$. This is effectively 0 .

MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

