Exam 1 Practice Questions I -solutions, 18.05, Spring 2014

Note: This is a set of practice problems for exam 1. The actual exam will be much shorter.

1. Sort the letters: A BB II L O P R T Y. There are 11 letters in all. We build arrangements by starting with 11 'slots' and placing the letters in these slots, e.g

$$
\underline{A} \underline{B} \underline{B} \underline{I} \underline{O} \underline{P} \underline{R} \underline{Y}
$$

Create an arrangement in stages and count the number of possibilities at each stage:
Stage 1: Choose one of the 11 slots to put the A: $\binom{11}{1}$
Stage 2: Choose two of the remaining 10 slots to put the B's: $\binom{10}{2}$
Stage 3: Choose two of the remaining 8 slots to put the B's: $\binom{8}{2}$
Stage 4: Choose one of the remaining 6 slots to put the L: $\binom{6}{1}$
Stage 5: Choose one of the remaining 5 slots to put the O: $\binom{5}{1}$
Stage 6: Choose one of the remaining 4 slots to put the $\mathrm{P}:\binom{4}{1}$
Stage 7: Choose one of the remaining 3 slots to put the $\mathrm{R}:\binom{3}{1}$
Stage 8: Choose one of the remaining 2 slots to put the $\mathrm{T}:\binom{2}{1}$
Stage 9: Use the last slot for the Y: $\binom{1}{1}$
Number of arrangements:

$$
\binom{11}{1}\binom{10}{2}\binom{8}{2}\binom{6}{1}\binom{5}{1}\binom{4}{1}\binom{3}{1}\binom{2}{1}\binom{1}{1}=11 \cdot \frac{109}{2} \cdot \frac{87}{2} \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=9979200
$$

Note: choosing 11 out of 1 is so simple we could have immediately written 11 instead of belaboring the issue by writing $\binom{11}{1}$. We wrote it this way to show one systematic way to think about problems like this.
2. Build the pairings in stages and count the ways to build each stage:

Stage 1: Choose the 4 men: $\binom{6}{4}$.
Stage 2: Choose the 4 women: $\binom{7}{4}$
We need to be careful because we don't want to build the same 4 couples in multiple ways. Line up the 4 men $M_{1}, M_{2}, M_{3}, M_{4}$
Stage 3: Choose a partner from the 4 women for $M_{1}: 4$.
Stage 4: Choose a partner from the remaining 3 women for $M_{2}: 3$
Stage 5: Choose a partner from the remaining 2 women for $M_{3}: 2$
Stage 6: Pair the last women with $M_{4}: 1$

Number of possible pairings: $\binom{6}{4}\binom{7}{4} 4$!.
Note: we could have done stages 3-6 in on go as: Stages 3-6: Arrange the 4 women opposite the 4 men: 4 ! ways.
3. We are given $P\left(A^{c} \cap B^{c}\right)=2 / 3$ and asked to find $P(A \cup B)$.
$A^{c} \cap B^{c}=(A \cup B)^{c} \Rightarrow P(A \cup B)=1-P\left(A^{c} \cap B^{c}\right)=1 / 3$.
4. D is the disjoint union of $D \cap C$ and $D \cap C^{c}$.

So, $P(D \cap C)+P\left(D \cap C^{c}\right)=P(D)$
$\Rightarrow P\left(D \cap C^{c}\right)=P(D)-P(D \cap C)=0.45-0.1=0.35$.
(We never use $P(C)=0.25$.)

5. The following tree shows the setting

Let C be the event that you answer the question correctly. Let K be the event that you actually know the answer. The left circled node shows $P(K \cap C)=p$. Both circled nodes together show $P(C)=p+(1-p) / c)$. So,

$$
P(K \mid C)=\frac{P(K \cap C)}{P(C)}=\frac{p}{p+(1-p) / c}
$$

Or we could use the algebraic form of Bayes theorem and the law of total probability: Let G stand for the event that you're guessing. Then we have, $P(C \mid K)=1, P(K)=p, P(C)=P(C \mid K) P(K)+P(C \mid G) P(G)=p+(1-p) / c$. So,

$$
P(K \mid C)=\frac{P(C \mid K) P(K)}{P(C)}=\frac{p}{p+(1-p) / c}
$$

6. \quad Sample space $=$

$$
\Omega=\{(1,1),(1,2),(1,3), \ldots,(6,6)\}=\{(i, j) \mid i, j=1,2,3,4,5,6\} .
$$

(Each outcome is equally likely, with probability $1 / 36$.)
$A=\{(1,2),(2,1)\}$,
$B=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$
$C=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1)\}$
(a) $P(A \mid C)=\frac{P(A \cap C)}{P(C)}=\frac{2 / 36}{11 / 36}=\frac{2}{11}$.
(a) $P(B \mid C)=\frac{P(B \cap C)}{P(C)}=\frac{2 / 36}{11 / 36}=\frac{2}{11}$.
(c) $P(A)=2 / 36 \neq P(A \mid C)$, so they are not independent. Similarly, $P(B)=6 / 36 \neq$ $P(B \mid C)$, so they are not independent.
7. We show the probabilities in a tree:

For a given problem let C be the event the student gets the problem correct and K the event the student knows the answer.
The question asks for $P(K \mid C)$.
We'll compute this using Bayes' rule:

$$
P(K \mid C)=\frac{P(C \mid K) P(K)}{P(C)}=\frac{1 \cdot 1 / 2}{1 / 2+1 / 12+1 / 16}=\frac{24}{31} \approx 0.774=77.4 \%
$$

8. We have $P(A \cup B)=1-0.42=0.58$ and we know because of the inclusion-exclusion principle that

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B) .
$$

Thus,
$P(A \cap B)=P(A)+P(B)-P(A \cup B)=0.4+0.3-0.58=0.12=(0.4)(0.3)=P(A) P(B)$
So A and B are independent.
9. We will make use of the formula $\operatorname{Var}(Y)=E\left(Y^{2}\right)-E(Y)^{2}$. First we compute

$$
\begin{gathered}
E[X]=\int_{0}^{1} x \cdot 2 x d x=\frac{2}{3} \\
E\left[X^{2}\right]=\int_{0}^{1} x^{2} \cdot 2 x d x=\frac{1}{2} \\
E\left[X^{4}\right]=\int_{0}^{1} x^{4} \cdot 2 x d x=\frac{1}{3} .
\end{gathered}
$$

Thus,

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=\frac{1}{2}-\frac{4}{9}=\frac{1}{18}
$$

and

$$
\operatorname{Var}\left(X^{2}\right)=E\left[X^{4}\right]-\left(E\left[X^{2}\right]\right)^{2}=\frac{1}{3}-\frac{1}{4}=\frac{1}{12}
$$

10. Make a table

$X:$	0	1
prob:	$(1-\mathrm{p})$	p
X^{2}	0	1.

From the table, $E(X)=0 \cdot(1-p)+1 \cdot p=p$.
Since X and X^{2} have the same table $E\left(X^{2}\right)=E(X)=p$.
Therefore, $\operatorname{Var}(X)=p-p^{2}=p(1-p)$.
11. Let X be the number of people who get their own hat.

Following the hint: let X_{j} represent whether person j gets their own hat. That is, $X_{j}=1$ if person j gets their hat and 0 if not.
We have, $X=\sum_{j=1}^{100} X_{j}$, so $E(X)=\sum_{j=1}^{100} E\left(X_{j}\right)$.
Since person j is equally likely to get any hat, we have $P\left(X_{j}=1\right)=1 / 100$. Thus, $X_{j} \sim$ Bernoulli $(1 / 100) \Rightarrow E\left(X_{j}\right)=1 / 100 \Rightarrow E(X)=1$.
12. For $y=0,2,4, \ldots, 2 n$,

$$
P(Y=y)=P\left(X=\frac{y}{2}\right)=\binom{n}{y / 2}\left(\frac{1}{2}\right)^{n} .
$$

13. The CDF for R is

$$
F_{R}(r)=P(R \leq r)=\int_{0}^{r} 2 \mathrm{e}^{-2 u} d u=-\left.\mathrm{e}^{-2 u}\right|_{0} ^{r}=1-\mathrm{e}^{-2 r} .
$$

Next, we find the CDF of $T . T$ takes values in $(0, \infty)$.
For $0<t$,

$$
F_{T}(t)=P(T \leq t)=P(1 / R<t)=P(1 / t>R)=1-F_{R}(1 / t)=\mathrm{e}^{-2 / t}
$$

We differentiate to get $f_{T}(t)=\frac{d}{d t}\left(\mathrm{e}^{-2 / t}\right)=\frac{2}{t^{2}} \mathrm{e}^{-2 / t}$
14. The jumps in the distribution function are at $0,2,4$. The value of $p(a)$ at a jump is the height of the jump:

$$
\begin{array}{r|ccc}
a & 0 & 2 & 4 \\
\hline p(a) & 1 / 5 & 1 / 5 & 3 / 5
\end{array}
$$

15. We compute

$$
P(X \geq 5)=1-P(X<5)=1-\int_{0}^{5} \lambda \mathrm{e}^{-\lambda x} d x=1-\left(1-\mathrm{e}^{-5 \lambda}\right)=\mathrm{e}^{-5 \lambda}
$$

(b) We want $P(X \geq 15 \mid X \geq 10)$. First observe that $P(X \geq 15, X \geq 10)=P(X \geq 15)$. From similar computations in (a), we know

$$
P(X \geq 15)=\mathrm{e}^{-15 \lambda} \quad P(X \geq 10)=\mathrm{e}^{-10 \lambda}
$$

From the definition of conditional probability,

$$
P(X \geq 15 \mid X \geq 10)=\frac{P(X \geq 15, X \geq 10)}{P(X \geq 10)}=\frac{P(X \geq 15)}{P(X \geq 10)}=\mathrm{e}^{-5 \lambda}
$$

Note: This is an illustration of the memorylessness property of the exponential distribution.

16. Transforming Normal Distributions

(a) Note, Y follows what is called a log-normal distribution.
$F_{Y}(a)=P(Y \leq a)=P\left(e^{Z} \leq a\right)=P(Z \leq \ln (a))=\Phi(\ln (a))$.
Differentiating using the chain rule:

$$
f_{y}(a)=\frac{d}{d a} F_{Y}(a)=\frac{d}{d a} \Phi(\ln (a))=\frac{1}{a} \phi(\ln (a))=\frac{1}{\sqrt{2 \pi} a} \mathrm{e}^{-(\ln (a))^{2} / 2} .
$$

(b) (i) The 0.33 quantile for Z is the value $q_{0.33}$ such that $P\left(Z \leq q_{0.33}\right)=0.33$. That is, we want

$$
\Phi\left(q_{0.33}\right)=0.33 \Leftrightarrow q_{0.33}=\Phi^{-1}(0.33) .
$$

(ii) We want to find $q_{0.9}$ where

$$
F_{Y}\left(q_{0.9}\right)=0.9 \Leftrightarrow \Phi\left(\ln \left(q_{0.9}\right)\right)=0.9 \Leftrightarrow q_{0.9}=\mathrm{e}^{\Phi^{-1}(0.9)} .
$$

(iii) As in (ii) $q_{0.5}=\mathrm{e}^{\Phi^{-1}(0.5)}=\mathrm{e}^{0}=1$.
17. (a) Total probability must be 1 , so

$$
1=\int_{0}^{3} \int_{0}^{3} f(x, y) d y d x=\int_{0}^{3} \int_{0}^{3} c\left(x^{2} y+x^{2} y^{2}\right) d y d x=c \cdot \frac{243}{2},
$$

(Here we skipped showing the arithmetic of the integration) Therefore, $c=\frac{2}{243}$.
(b)

$$
\begin{aligned}
P(1 \leq X \leq 2,0 \leq Y \leq 1) & =\int_{1}^{2} \int_{0}^{1} f(x, y) d y d x \\
& =\int_{1}^{2} \int_{0}^{1} c\left(x^{2} y+x^{2} y^{2}\right) d y d x \\
& =c \cdot \frac{35}{18} \\
& =\frac{70}{4374} \approx 0.016
\end{aligned}
$$

(c) For $0 \leq a \leq 1$ and $0 \leq b \leq 1$. we have

$$
F(a, b)=\int_{0}^{a} \int_{0}^{b} f(x, y) d y d x=c\left(\frac{a^{3} b^{2}}{6}+\frac{a^{3} b^{3}}{9}\right)
$$

(d) Since $y=3$ is the maximum value for Y, we have

$$
F_{X}(a)=F(a, 3)=c\left(\frac{9 a^{3}}{6}+3 a^{3}\right)=\frac{9}{2} c a^{3}=\frac{a^{3}}{27}
$$

(e) For $0 \leq x \leq 3$, we have, by integrating over the entire range for y,

$$
f_{X}(x)=\int_{0}^{3} f(x, y) d y=c x^{2}\left(\frac{3^{2}}{2}+\frac{3^{3}}{3}\right)=c \frac{27}{2} x^{2}=\frac{1}{9} x^{2}
$$

This is consistent with (c) because $\frac{d}{d x}\left(x^{3} / 27\right)=x^{2} / 9$.
(f) Since $f(x, y)$ separates into a product as a function of x times a function of y we know X and Y are independent.
18. (Central Limit Theorem) Let $T=X_{1}+X_{2}+\ldots+X_{81}$. The central limit theorem says that

$$
T \approx \mathrm{~N}(81 * 5,81 * 4)=\mathrm{N}\left(405,18^{2}\right)
$$

Standardizing we have

$$
\begin{aligned}
P(T>369) & =P\left(\frac{T-405}{18}>\frac{369-405}{18}\right) \\
& \approx P(Z>-2) \\
& \approx 0.975
\end{aligned}
$$

The value of 0.975 comes from the rule-of-thumb that $P(|Z|<2) \approx 0.95$. A more exact value (using R) is $P(Z>-2) \approx 0.9772$.

MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

