Exam 1 Practice Questions I -solutions, 18.05, Spring 2014

Note: This is a set of practice problems for exam 1. The actual exam will be much shorter.

1. Sort the letters: A BB II L O P R T Y. There are 11 letters in all. We build arrangements by starting with 11 'slots' and placing the letters in these slots, e.g

ABIBILOPRTY

Create an arrangement in stages and count the number of possibilities at each stage:

Stage 1: Choose one of the 11 slots to put the A: $\binom{11}{1}$

Stage 2: Choose two of the remaining 10 slots to put the B's: $\binom{10}{2}$

Stage 3: Choose two of the remaining 8 slots to put the B's: $\binom{8}{2}$

Stage 4: Choose one of the remaining 6 slots to put the L: $\binom{6}{1}$

Stage 5: Choose one of the remaining 5 slots to put the O: $\binom{5}{1}$

Stage 6: Choose one of the remaining 4 slots to put the P: $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$

Stage 7: Choose one of the remaining 3 slots to put the R: $\binom{3}{1}$

Stage 8: Choose one of the remaining 2 slots to put the T: $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$

Stage 9: Use the last slot for the Y: $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Number of arrangements:

$$\binom{11}{1}\binom{10}{2}\binom{8}{2}\binom{6}{1}\binom{5}{1}\binom{4}{1}\binom{3}{1}\binom{2}{1}\binom{1}{1}\binom{1}{1} = 11 \cdot \frac{10 \cdot 9}{2} \cdot \frac{8 \cdot 7}{2} \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 9979200$$

Note: choosing 11 out of 1 is so simple we could have immediately written 11 instead of belaboring the issue by writing $\binom{11}{1}$. We wrote it this way to show one systematic way to think about problems like this.

2. Build the pairings in stages and count the ways to build each stage:

Stage 1: Choose the 4 men: $\binom{6}{4}$.

Stage 2: Choose the 4 women: $\begin{pmatrix} 7 \\ 4 \end{pmatrix}$

We need to be careful because we don't want to build the same 4 couples in multiple ways. Line up the 4 men M_1 , M_2 , M_3 , M_4

Stage 3: Choose a partner from the 4 women for M_1 : 4.

Stage 4: Choose a partner from the remaining 3 women for M_2 : 3

Stage 5: Choose a partner from the remaining 2 women for M_3 : 2

Stage 6: Pair the last women with M_4 : 1

Number of possible pairings: $\binom{6}{4}\binom{7}{4}4!$.

Note: we could have done stages 3-6 in on go as: Stages 3-6: Arrange the 4 women opposite the 4 men: 4! ways.

3. We are given $P(A^c \cap B^c) = 2/3$ and asked to find $P(A \cup B)$.

$$A^{c} \cap B^{c} = (A \cup B)^{c} \Rightarrow P(A \cup B) = 1 - P(A^{c} \cap B^{c}) = 1/3.$$

4. D is the disjoint union of $D \cap C$ and $D \cap C^c$.

So,
$$P(D \cap C) + P(D \cap C^c) = P(D)$$

 $\Rightarrow P(D \cap C^c) = P(D) - P(D \cap C) = 0.45 - 0.1 = \boxed{0.35.}$
(We never use $P(C) = 0.25$.)

5. The following tree shows the setting

Let C be the event that you answer the question correctly. Let K be the event that you actually know the answer. The left circled node shows $P(K \cap C) = p$. Both circled nodes together show P(C) = p + (1 - p)/c. So,

$$P(K|C) = \frac{P(K \cap C)}{P(C)} = \frac{p}{p + (1-p)/c}$$

Or we could use the algebraic form of Bayes theorem and the law of total probability: Let G stand for the event that you're guessing. Then we have,

$$P(C|K) = 1, P(K) = p, P(C) = P(C|K)P(K) + P(C|G)P(G) = p + (1 - p)/c.$$
 So,

$$P(K|C) = \frac{P(C|K)P(K)}{P(C)} = \frac{p}{p + (1-p)/c}$$

6. Sample space =

$$\Omega = \{(1,1), (1,2), (1,3), \dots, (6,6)\} = \{(i,j) | i,j = 1, 2, 3, 4, 5, 6\}.$$

(Each outcome is equally likely, with probability 1/36.)

$$A = \{(1,2), (2,1)\},\$$

$$B = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$$

$$C = \{(1,1),\, (1,2),\, (1,3),\, (1,4),\, (1,5),\, (1,6),\, (2,1),\, (3,1),\, (4,1),\, (5,1),\, (6,1)\}$$

(a)
$$P(A|C) = \frac{P(A \cap C)}{P(C)} = \frac{2/36}{11/36} = \frac{2}{11}...$$

(a)
$$P(B|C) = \frac{P(B \cap C)}{P(C)} = \frac{2/36}{11/36} = \frac{2}{11}...$$

(c) $P(A) = 2/36 \neq P(A|C)$, so they are not independent. Similarly, $P(B) = 6/36 \neq P(B|C)$, so they are not independent.

7. We show the probabilities in a tree:

For a given problem let C be the event the student gets the problem correct and K the event the student knows the answer.

The question asks for P(K|C).

We'll compute this using Bayes' rule:

$$P(K|C) = \frac{P(C|K)P(K)}{P(C)} = \frac{1 \cdot 1/2}{1/2 + 1/12 + 1/16} = \frac{24}{31} \approx 0.774 = 77.4\%$$

8. We have $P(A \cup B) = 1 - 0.42 = 0.58$ and we know because of the inclusion-exclusion principle that

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Thus,

$$P(A \cap B) = P(A) + P(B) - P(A \cup B) = 0.4 + 0.3 - 0.58 = 0.12 = (0.4)(0.3) = P(A)P(B)$$

So A and B are independent.

9. We will make use of the formula $Var(Y) = E(Y^2) - E(Y)^2$. First we compute

$$E[X] = \int_0^1 x \cdot 2x dx = \frac{2}{3}$$

$$E[X^2] = \int_0^1 x^2 \cdot 2x dx = \frac{1}{2}$$

$$E[X^4] = \int_0^1 x^4 \cdot 2x dx = \frac{1}{3}.$$

Thus,

$$Var(X) = E[X^2] - (E[X])^2 = \frac{1}{2} - \frac{4}{9} = \frac{1}{18}$$

and

$$Var(X^2) = E[X^4] - (E[X^2])^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.$$

10. Make a table

$$\begin{array}{c|cccc} X: & 0 & 1 \\ \hline \text{prob:} & (1\text{-p}) & p \\ \hline X^2 & 0 & 1. \\ \hline \end{array}$$

From the table, $E(X) = 0 \cdot (1-p) + 1 \cdot p = p$.

Since X and X^2 have the same table $E(X^2) = E(X) = p$.

Therefore,
$$Var(X) = p - p^2 = p(1 - p)$$
.

11. Let X be the number of people who get their own hat.

Following the hint: let X_j represent whether person j gets their own hat. That is, $X_j = 1$ if person j gets their hat and 0 if not.

We have,
$$X = \sum_{j=1}^{100} X_j$$
, so $E(X) = \sum_{j=1}^{100} E(X_j)$.

Since person j is equally likely to get any hat, we have $P(X_j = 1) = 1/100$. Thus, $X_j \sim \text{Bernoulli}(1/100) \Rightarrow E(X_j) = 1/100 \Rightarrow E(X_j) = 1$.

12. For $y = 0, 2, 4, \dots, 2n$,

$$P(Y = y) = P(X = \frac{y}{2}) = \binom{n}{y/2} \left(\frac{1}{2}\right)^n.$$

13. The CDF for R is

$$F_R(r) = P(R \le r) = \int_0^r 2e^{-2u} du = -e^{-2u} \Big|_0^r = 1 - e^{-2r}.$$

Next, we find the CDF of T. T takes values in $(0, \infty)$.

For 0 < t,

$$F_T(t) = P(T \le t) = P(1/R < t) = P(1/t > R) = 1 - F_R(1/t) = e^{-2/t}.$$

We differentiate to get $f_T(t) = \frac{d}{dt} \left(e^{-2/t} \right) = \frac{2}{t^2} e^{-2/t}$

14. The jumps in the distribution function are at 0, 2, 4. The value of p(a) at a jump is the height of the jump:

15. We compute

$$P(X \ge 5) = 1 - P(X < 5) = 1 - \int_0^5 \lambda e^{-\lambda x} dx = 1 - (1 - e^{-5\lambda}) = e^{-5\lambda}.$$

(b) We want $P(X \ge 15 | X \ge 10)$. First observe that $P(X \ge 15, X \ge 10) = P(X \ge 15)$. From similar computations in (a), we know

$$P(X \ge 15) = e^{-15\lambda}$$
 $P(X \ge 10) = e^{-10\lambda}$.

From the definition of conditional probability,

$$P(X \ge 15 | X \ge 10) = \frac{P(X \ge 15, X \ge 10)}{P(X \ge 10)} = \frac{P(X \ge 15)}{P(X \ge 10)} = e^{-5\lambda}$$

Note: This is an illustration of the memorylessness property of the exponential distribution.

16. Transforming Normal Distributions

(a) Note, Y follows what is called a log-normal distribution.

$$F_Y(a) = P(Y \le a) = P(e^Z \le a) = P(Z \le \ln(a)) = \Phi(\ln(a)).$$

Differentiating using the chain rule:

$$f_y(a) = \frac{d}{da} F_Y(a) = \frac{d}{da} \Phi(\ln(a)) = \frac{1}{a} \phi(\ln(a)) = \boxed{\frac{1}{\sqrt{2\pi} a} e^{-(\ln(a))^2/2}}.$$

(b) (i) The 0.33 quantile for Z is the value $q_{0.33}$ such that $P(Z \le q_{0.33}) = 0.33$. That is, we want

$$\Phi(q_{0.33}) = 0.33 \Leftrightarrow q_{0.33} = \Phi^{-1}(0.33)$$

(ii) We want to find $q_{0.9}$ where

$$F_Y(q_{0.9}) = 0.9 \Leftrightarrow \Phi(\ln(q_{0.9})) = 0.9 \Leftrightarrow q_{0.9} = e^{\Phi^{-1}(0.9)}$$

(iii) As in (ii)
$$q_{0.5} = e^{\Phi^{-1}(0.5)} = e^0 = \boxed{1}$$
.

17. (a) Total probability must be 1, so

$$1 = \int_0^3 \int_0^3 f(x, y) \, dy \, dx = \int_0^3 \int_0^3 c(x^2 y + x^2 y^2) \, dy \, dx = c \cdot \frac{243}{2},$$

(Here we skipped showing the arithmetic of the integration) Therefore, $c = \frac{2}{243}$.

(b)

$$\begin{split} P(1 \leq X \leq 2, \, 0 \leq Y \leq 1) &= \int_{1}^{2} \int_{0}^{1} f(x, y) \, dy \, dx \\ &= \int_{1}^{2} \int_{0}^{1} c(x^{2}y + x^{2}y^{2}) \, dy \, dx \\ &= c \cdot \frac{35}{18} \\ &= \frac{70}{4374} \approx 0.016 \end{split}$$

(c) For $0 \le a \le 1$ and $0 \le b \le 1$, we have

$$F(a,b) = \int_0^a \int_0^b f(x,y) dy dx = c \left(\frac{a^3 b^2}{6} + \frac{a^3 b^3}{9} \right)$$

(d) Since y = 3 is the maximum value for Y, we have

$$F_X(a) = F(a,3) = c\left(\frac{9a^3}{6} + 3a^3\right) = \frac{9}{2}c a^3 = \frac{a^3}{27}$$

(e) For $0 \le x \le 3$, we have, by integrating over the entire range for y,

$$f_X(x) = \int_0^3 f(x,y) \, dy = cx^2 \left(\frac{3^2}{2} + \frac{3^3}{3}\right) = c\frac{27}{2}x^2 = \frac{1}{9}x^2.$$

This is consistent with (c) because $\frac{d}{dx}(x^3/27) = x^2/9$.

(f) Since f(x, y) separates into a product as a function of x times a function of y we know X and Y are independent.

18. (Central Limit Theorem) Let $T = X_1 + X_2 + ... + X_{81}$. The central limit theorem says that

$$T \approx N(81 * 5, 81 * 4) = N(405, 18^2)$$

Standardizing we have

$$P(T > 369) = P\left(\frac{T - 405}{18} > \frac{369 - 405}{18}\right)$$

 $\approx P(Z > -2)$
 ≈ 0.975

The value of 0.975 comes from the rule-of-thumb that $P(|Z| < 2) \approx 0.95$. A more exact value (using R) is $P(Z > -2) \approx 0.9772$.

MIT OpenCourseWare https://ocw.mit.edu

18.05 Introduction to Probability and Statistics Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.