Review for Exam 1 18.05 Spring 2014

Normal Table

Standard normal table of left tail probabilities.

Z	$\Phi(z)$	Z	$\Phi(z)$	Z	$\Phi(z)$	z	$\Phi(z)$
-4.00	0.0000	-2.00	0.0228	0.00	0.5000	2.00	0.9772
-3.95	0.0000	-1.95	0.0256	0.05	0.5199	2.05	0.9798
-3.90	0.0000	-1.90	0.0287	0.10	0.5398	2.10	0.9821
-3.85	0.0001	-1.85	0.0322	0.15	0.5596	2.15	0.9842
-3.80	0.0001	-1.80	0.0359	0.20	0.5793	2.20	0.9861
-3.75	0.0001	-1.75	0.0401	0.25	0.5987	2.25	0.9878
-3.70	0.0001	-1.70	0.0446	0.30	0.6179	2.30	0.9893
-3.65	0.0001	-1.65	0.0495	0.35	0.6368	2.35	0.9906
-3.60	0.0002	-1.60	0.0548	0.40	0.6554	2.40	0.9918
-3.55	0.0002	-1.55	0.0606	0.45	0.6736	2.45	0.9929
-3.50	0.0002	-1.50	0.0668	0.50	0.6915	2.50	0.9938
-3.45	0.0003	-1.45	0.0735	0.55	0.7088	2.55	0.9946
-3.40	0.0003	-1.40	0.0808	0.60	0.7257	2.60	0.9953
-3.35	0.0004	-1.35	0.0885	0.65	0.7422	2.65	0.9960
-3.30	0.0005	-1.30	0.0968	0.70	0.7580	2.70	0.9965
-3.25	0.0006	-1.25	0.1056	0.75	0.7734	2.75	0.9970

Topics

- 1. Sets.
- 2. Counting.
- 3. Sample space, outcome, event, probability function.
- 4. Probability: conditional probability, independence, Bayes' theorem.
- 5. Discrete random variables: events, pmf, cdf.
- 6. Bernoulli(p), binomial(n, p), geometric(p), uniform(n)
- 7. E(X), Var(X), σ
- 8. Continuous random variables: pdf, cdf.
- 9. uniform(a,b), exponential(λ), normal(μ , σ^2)
- 10. Transforming random variables.
- 11. Quantiles.
- 12. Central limit theorem, law of large numbers, histograms.
- 13. Joint distributions: pmf, pdf, cdf, covariance and correlation.

Sets and counting

Sets:

 $\ensuremath{\emptyset}$, union, intersection, complement Venn diagrams, products

• Counting:

inclusion-exclusion, rule of product, permutations $_{n}P_{k}$, combinations $_{n}C_{k} = \binom{n}{k}$

Probability

- Sample space, outcome, event, probability function. Rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$. Special case: $P(A^c) = 1 - P(A)$ (A and B disjoint $\Rightarrow P(A \cup B) = P(A) + P(B)$.)
- Conditional probability, multiplication rule, trees, law of total probability, independence
- Bayes' theorem, base rate fallacy

Random variables, expectation and variance

- Discrete random variables: events, pmf, cdf
- Bernoulli(p), binomial(n, p), geometric(p), uniform(n)
- E(X), meaning, algebraic properties, E(h(X))
- Var(X), meaning, algebraic properties
- Continuous random variables: pdf, cdf
- uniform(a,b), exponential (λ) , normal (μ,σ)
- Transforming random variables
- Quantiles

Central limit theorem

- Law of large numbers averages and histograms
- Central limit theorem

Joint distributions

- Joint pmf, pdf, cdf.
- Marginal pmf, pdf, cdf
- Covariance and correlation.

Hospitals (binomial, CLT, etc)

- A certain town is served by two hospitals.
- Larger hospital: about 45 babies born each day.
- Smaller hospital about 15 babies born each day.
- For a period of 1 year, each hospital recorded the days on which more than 60% of the babies born were boys.

(a) Which hospital do you think recorded more such days?(i) The larger hospital.(ii) The smaller hospital.

(iii) About the same (that is, within 5% of each other).

(b) Assume exactly 45 and 15 babies are born at the hospitals each day. Let L_i (resp., S_i) be the Bernoulli random variable which takes the value 1 if more than 60% of the babies born in the larger (resp., smaller) hospital on the *i*th day were boys. Determine the distribution of L_i and of S_i .

Continued on next slide

Hospital continued

(c) Let L (resp., S) be the number of days on which more than 60% of the babies born in the larger (resp., smaller) hospital were boys. What type of distribution do L and S have? Compute the expected value and variance in each case.

(d) Via the CLT, approximate the 0.84 quantile of L (resp., S). Would you like to revise your answer to part (a)?

(e) What is the correlation of L and S? What is the joint pmf of L and S? Visualize the region corresponding to the event L > S. Express P(L > S) as a double sum.

Solution on next slide.

Solution

answer: (a) When this question was asked in a study, the number of undergraduates who chose each option was 21, 21, and 55, respectively. This shows a lack of intuition for the relevance of sample size on deviation from the true mean (i.e., variance).

(b) The random variable X_L , giving the number of boys born in the larger hospital on day *i*, is governed by a Bin(45, .5) distribution. So L_i has a Ber(p_L) distribution with

$$p_L = P(X_1 > 27) = \sum_{k=28}^{45} \begin{pmatrix} 45 \\ k \end{pmatrix} .5^{45} \approx 0.068.$$

Similarly, the random variable X_S , giving the number of boys born in the smaller hospital on day *i*, is governed by a Bin(15, .5) distribution. So S_i has a Ber(p_S) distribution with

$$p_S = P(X_S > 9) = \sum_{k=10}^{15} \begin{pmatrix} 15 \\ k \end{pmatrix} .5^{15} \approx 0.151.$$

We see that p_S is indeed greater than p_L , consistent with (*ii*).

Solution continued

(c) Note that $L = \sum_{i=1}^{365} L_i$ and $S = \sum_{i=1}^{365} S_i$. So L has a Bin(365, p_L) distribution and S has a Bin(365, p_S) distribution. Thus

$$E(L) = 365p_L \approx 25$$

$$E(S) = 365p_S \approx 55$$

$$Var(L) = 365p_L(1 - p_L) \approx 23$$

$$Var(S) = 365p_S(1 - p_S) \approx 47$$

(d) By the CLT, the 0.84 quantile is approximately the mean + one sd in each case:

For *L*, $q_{0.84} \approx 25 + \sqrt{23}$. For *S*, $q_{0.84} \approx 55 + \sqrt{47}$.

Continued on next slide.

Solution continued

(e) Since L and S are independent, their correlation is 0 and theirjoint distribution is determined by multiplying their individual distributions. Both L and S are binomial with n = 365 and p_L and p_S computed above. Thus

$$P(L = i \text{ and } S = j) = p(i,j) = {365 \choose i} p_L^i (1-p_L)^{365-i} {365 \choose j} p_S^j (1-p_S)^{365-j}$$

Thus

$$P(L > S) = \sum_{i=0}^{364} \sum_{j=i+1}^{365} p(i,j) \approx .0000916$$

We used the R code on the next slide to do the computations.

R code

```
pL = 1 - pbinom(.6*45, 45, .5)
pS = 1 - pbinom(.6*15, 15, .5)
print(pL)
print(pS)
pLGreaterS = 0
for(i in 0:365)
    for(j in 0:(i-1))
        = pLGreaterS + dbinom(i,365,pL)*dbinom(j,365,pS)
    }
print(pLGreaterS)
```

Problem correlation

1. Flip a coin 3 times. Use a joint pmf table to compute the covariance and correlation between the number of heads on the first 2 and the number of heads on the last 2 flips.

2. Flip a coin 5 times. Use properties of covariance to compute the covariance and correlation between the number of heads on the first 3 and last 3 flips.

answer: 1. Let X = the number of heads on the first 2 flips and Y the number in the last 2. Considering all 8 possible tosses: *HHH*, *HHT* etc we get the following joint pmf for X and Y

Y/X	0	1	2	
0	1/8	1/8	0	1/4
1	1/8	1/4	1/8	1/2
2	0	1/8	1/8	1/4
	1/4	1/2	1/4	1

Solution continued on next slide

Solution 1 continued

Using the table we find

$$E(XY) = \frac{1}{4} + 2\frac{1}{8} + 2\frac{1}{8} + 4\frac{1}{8} = \frac{5}{4}.$$

We know $E(X) = 1 = E(Y)$ so
 $Cov(X, Y) = E(XY) - E(X)E(Y) = \frac{5}{4} - 1 =$

Since X is the sum of 2 independent Bernoulli(.5) we have $\sigma_X = \sqrt{2/4}$

$$Cor(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y} = \frac{1/4}{(2)/4} = \frac{1}{2}.$$

Solution to 2 on next slide

 $\frac{1}{4}$.

Solution 2

2. As usual let X_i = the number of heads on the i^{th} flip, i.e. 0 or 1. Let $X = X_1 + X_2 + X_3$ the sum of the first 3 flips and $Y = X_3 + X_4 + X_5$ the sum of the last 3. Using the algebraic properties of covariance we have

$$Cov(X, Y) = Cov(X_1 + X_2 + X_3, X_3 + X_4 + X_5)$$

= Cov(X₁, X₃) + Cov(X₁, X₄) + Cov(X₁, X₅)
+ Cov(X₂, X₃) + Cov(X₂, X₄) + Cov(X₂, X₅)
+ Cov(X₃, X₃) + Cov(X₃, X₄) + Cov(X₃, X₅)

Because the X_i are independent the only non-zero term in the above sum is $Cov(X_3X_3) = Var(X_3) = \frac{1}{4}$ Therefore, $Cov(X, Y) = \frac{1}{4}$. We get the correlation by dividing by the standard deviations. Since X is the sum of 3 independent Bernoulli(.5) we have $\sigma_X = \sqrt{3/4}$

$$Cor(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y} = \frac{1/4}{(3)/4} = \frac{1}{3}.$$

MIT OpenCourseWare https://ocw.mit.edu

18.05 Introduction to Probability and Statistics Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.