Joint Distributions, Independence
 Covariance and Correlation

 18.05 Spring 2014| $X \backslash Y$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $1 / 36$ | $1 / 36$ | $1 / 36$ | $1 / 36$ | $1 / 36$ | $1 / 36$ |
| 2 | $1 / 36$ | $1 / 36$ | $1 / 36$ | $1 / 36$ | $1 / 36$ | $1 / 36$ |
| 3 | $1 / 36$ | $1 / 36$ | $1 / 36$ | $1 / 36$ | $1 / 36$ | $1 / 36$ |
| 4 | $1 / 36$ | $1 / 36$ | $1 / 36$ | $1 / 36$ | $1 / 36$ | $1 / 36$ |
| 5 | $1 / 36$ | $1 / 36$ | $1 / 36$ | $1 / 36$ | $1 / 36$ | $1 / 36$ |
| 6 | $1 / 36$ | $1 / 36$ | $1 / 36$ | $1 / 36$ | $1 / 36$ | $1 / 36$ |

Joint Distributions

X and Y are jointly distributed random variables.
Discrete: Probability mass function (pmf):

$$
p\left(x_{i}, y_{j}\right)
$$

Continuous: probability density function (pdf):

$$
f(x, y)
$$

Both: cumulative distribution function (cdf):

$$
F(x, y)=P(X \leq x, Y \leq y)
$$

Discrete joint pmf: example 1
Roll two dice: $X=\#$ on first die, $Y=\#$ on second die
X takes values in $1,2, \ldots, 6, \quad Y$ takes values in $1,2, \ldots, 6$
Joint probability table:

$X \backslash Y$	1	2	3	4	5	6
1	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
2	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
3	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
4	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
5	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
6	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$

pmf: $p(i, j)=1 / 36$ for any i and j between 1 and 6 .

Discrete joint pmf: example 2

Roll two dice: $X=\#$ on first die, $T=$ total on both dice

$X \backslash T$	2	3	4	5	6	7	8	9	10	11	12
1	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0	0	0	0
2	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0	0	0
3	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0	0
4	0	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0
5	0	0	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0
6	0	0	0	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$

Continuous joint distributions

- X takes values in $[a, b], \quad Y$ takes values in $[c, d]$
- (X, Y) takes values in $[a, b] \times[c, d]$.
- Joint probability density function (pdf) $f(x, y)$
$f(x, y) d x d y$ is the probability of being in the small square.

Properties of the joint pmf and pdf

Discrete case: probability mass function (pmf)

1. $0 \leq p\left(x_{i}, y_{j}\right) \leq 1$
2. Total probability is 1 .

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} p\left(x_{i}, y_{j}\right)=1
$$

Continuous case: probability density function (pdf)

1. $0 \leq f(x, y)$
2. Total probability is 1 .

$$
\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=1
$$

Note: $f(x, y)$ can be greater than 1: it is a density not a probability.

Example: discrete events

Roll two dice: $X=\#$ on first die, $Y=\#$ on second die.
Consider the event: $A=' Y-X \geq 2$ '
Describe the event A and find its probability. answer: We can describe A as a set of (X, Y) pairs:

$$
A=\{(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,6)\} .
$$

Or we can visualize it by shading the table:

$X \backslash Y$	1	2	3	4	5	6
1	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
2	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
3	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
4	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
5	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
6	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$

$P(A)=$ sum of probabilities in shaded cells $=10 / 36$.

Example: continuous events

Suppose (X, Y) takes values in $[0,1] \times[0,1]$.
Uniform density $f(x, y)=1$.
Visualize the event ' $X>Y$ ' and find its probability. answer:

The event takes up half the square. Since the density is uniform this is half the probability. That is, $P(X>Y)=0.5$

Cumulative distribution function

$$
\begin{gathered}
F(x, y)=P(X \leq x, Y \leq y)=\int_{c}^{y} \int_{a}^{x} f(u, v) d u d v \\
f(x, y)=\frac{\partial^{2} F}{\partial x \partial y}(x, y)
\end{gathered}
$$

Properties

1. $F(x, y)$ is non-decreasing. That is, as x or y increases $F(x, y)$ increases or remains constant.
2. $F(x, y)=0$ at the lower left of its range.

If the lower left is $(-\infty,-\infty)$ then this means

$$
\lim _{(x, y) \rightarrow(-\infty,-\infty)} F(x, y)=0
$$

3. $F(x, y)=1$ at the upper right of its range.

Marginal pmf and pdf

Roll two dice: $X=\#$ on first die, $T=$ total on both dice.
The marginal pmf of X is found by summing the rows. The marginal pmf of T is found by summing the columns

$X \backslash T$	2	3	4	5	6	7	8	9	10	11	12
$p\left(x_{i}\right)$											
1	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0	0	0	0
$1 / 6$											
2	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0	0	0
$1 / 6$											
3	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0	0
$1 / 6$											
4	0	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0
$1 / 6$											
5	0	0	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0
$1 / 6$											
6	0	0	0	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
$1 / 6$											
$p\left(t_{j}\right)$	$1 / 36$	$2 / 36$	$3 / 36$	$4 / 36$	$5 / 36$	$6 / 36$	$5 / 36$	$4 / 36$	$3 / 36$	$2 / 36$	$1 / 36$
1											

For continuous distributions the marginal pdf $f_{X}(x)$ is found by integrating out the y. Likewise for $f_{Y}(y)$.

Board question

Suppose X and Y are random variables and

- (X, Y) takes values in $[0,1] \times[0,1]$.
- the pdf is $\frac{3}{2}\left(x^{2}+y^{2}\right)$.
(1) Show $f(x, y)$ is a valid pdf.
(2) Visualize the event $A=' X>0.3$ and $Y>0.5$ '. Find its probability.
(0) Find the cdf $F(x, y)$.
- Find the marginal pdf $f_{X}(x)$. Use this to find $P(X<0.5)$.
- Use the $\operatorname{cdf} F(x, y)$ to find the marginal $\operatorname{cdf} F_{X}(x)$ and $P(X<0.5)$.
- See next slide

Board question continued

6. (New scenario) From the following table compute $F(3.5,4)$.

$X \backslash Y$	1	2	3	4	5	6
1	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
2	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
3	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
4	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
5	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
6	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$

Independence

Events A and B are independent if

$$
P(A \cap B)=P(A) P(B)
$$

Random variables X and Y are independent if

$$
F(x, y)=F_{X}(x) F_{Y}(y)
$$

Discrete random variables X and Y are independent if

$$
p\left(x_{i}, y_{j}\right)=p_{X}\left(x_{i}\right) p_{Y}\left(y_{j}\right)
$$

Continuous random variables X and Y are independent if

$$
f(x, y)=f_{X}(x) f_{Y}(y)
$$

Concept question: independence I

Roll two dice: $\quad X=$ value on first, $\quad Y=$ value on second

$X \backslash Y$	1	2	3	4	5	6	$p\left(x_{i}\right)$
1	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 6$
2	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 6$
3	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 6$
4	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 6$
5	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 6$
6	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 6$
$p\left(y_{j}\right)$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	1

Are X and Y independent?

1. Yes
2. No

Concept question: independence II

Roll two dice: $\quad X=$ value on first, $\quad T=$ sum

$X \backslash T$	2	3	4	5	6	7	8	9	10	11	12
$p\left(x_{i}\right)$											
1	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0	0	0	0
$1 / 6$											
2	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0	0	0
$1 / 6$											
3	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0	0
$1 / 6$											
4	0	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0
$1 / 6$											
5	0	0	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0
$1 / 6$											
6	0	0	0	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
$1 / 6$											
$p\left(y_{j}\right)$	$1 / 36$	$2 / 36$	$3 / 36$	$4 / 36$	$5 / 36$	$6 / 36$	$5 / 36$	$4 / 36$	$3 / 36$	$2 / 36$	$1 / 36$

Are X and Y independent? 1. Yes 2. No

Concept Question

Among the following pdf's which are independent? (Each of the ranges is a rectangle chosen so that $\iint f(x, y) d x d y=1$.)
(i) $f(x, y)=4 x^{2} y^{3}$.
(ii) $f(x, y)=\frac{1}{2}\left(x^{3} y+x y^{3}\right)$.
(iii) $f(x, y)=6 e^{-3 x-2 y}$

Put a 1 for independent and a 0 for not-independent.
(a) 111
(b) 110
(c) 101
(d) 100
(e) 011
(f) 010
(g) 001
(h) 000

Covariance

Measures the degree to which two random variables vary together, e.g. height and weight of people.
X, Y random variables with means μ_{X} and μ_{Y}

$$
\operatorname{Cov}(X, Y)=E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)
$$

Properties of covariance

Properties

1. $\operatorname{Cov}(a X+b, c Y+d)=a c \operatorname{Cov}(X, Y)$ for constants a, b, c, d.
2. $\operatorname{Cov}\left(X_{1}+X_{2}, Y\right)=\operatorname{Cov}\left(X_{1}, Y\right)+\operatorname{Cov}\left(X_{2}, Y\right)$.
3. $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
4. $\operatorname{Cov}(X, Y)=E(X Y)-\mu_{X} \mu_{Y}$.
5. If X and Y are independent then $\operatorname{Cov}(X, Y)=0$.
6. Warning: The converse is not true, if covariance is 0 the variables might not be independent.

Concept question

Suppose we have the following joint probability table.

$Y \backslash X$	-1	0	1	$p\left(y_{j}\right)$
0	0	$1 / 2$	0	$1 / 2$
1	$1 / 4$	0	$1 / 4$	$1 / 2$
$p\left(x_{i}\right)$	$1 / 4$	$1 / 2$	$1 / 4$	1

At your table work out the covariance $\operatorname{Cov}(X, Y)$.
Because the covariance is 0 we know that X and Y are independent

1. True 2. False

Key point: covariance measures the linear relationship between X and Y. It can completely miss a quadratic or higher order relationship.

Board question: computing covariance

Flip a fair coin 12 times.
Let $X=$ number of heads in the first 7 flips
Let $Y=$ number of heads on the last 7 flips.
Compute $\operatorname{Cov}(X, Y)$,

Correlation

Like covariance, but removes scale.
The correlation coefficient between X and Y is defined by

$$
\operatorname{Cor}(X, Y)=\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

Properties:

1. ρ is the covariance of the standardized versions of X and Y.
2. ρ is dimensionless (it's a ratio).
3. $-1 \leq \rho \leq 1 . \quad \rho=1$ if and only if $Y=a X+b$ with
$a>0$ and $\rho=-1$ if and only if $Y=a X+b$ with $a<0$.

Real-life correlations

- Over time, amount of Ice cream consumption is correlated with number of pool drownings.
- In 1685 (and today) being a student is the most dangerous profession.
- In 90% of bar fights ending in a death the person who started the fight died.
- Hormone replacement therapy (HRT) is correlated with a lower rate of coronary heart disease (CHD).

Correlation is not causation

Edward Tufte: "Empirically observed covariation is a necessary but not sufficient condition for causality."

Overlapping sums of uniform random variables

We made two random variables X and Y from overlapping sums of uniform random variables

For example:

$$
\begin{aligned}
& X=X_{1}+X_{2}+X_{3}+X_{4}+X_{5} \\
& Y=X_{3}+X_{4}+X_{5}+X_{6}+X_{7}
\end{aligned}
$$

These are sums of 5 of the X_{i} with 3 in common.
If we sum r of the X_{i} with s in common we name it (r, s).
Below are a series of scatterplots produced using R .

Scatter plots

$(1,0)$ cor $=0.00$, sample_cor $=-0.07$

$(5,1)$ cor $=0.20$, sample_cor $=0.21$

$(2,1)$ cor $=0.50$, sample_cor $=0.48$

$(10,8)$ cor $=0.80$, sample_cor $=0.81$

Concept question

Toss a fair coin $2 n+1$ times. Let X be the number of heads on the first $n+1$ tosses and Y the number on the last $n+1$ tosses.

If $n=1000$ then $\operatorname{Cov}(X, Y)$ is:
(a) 0
(b) $1 / 4$
(c) $1 / 2$
(d) 1
(e) More than 1
(f) tiny but not 0

Board question

Toss a fair coin $2 n+1$ times. Let X be the number of heads on the first $n+1$ tosses and Y the number on the last $n+1$ tosses.

Compute $\operatorname{Cov}(X, Y)$ and $\operatorname{Cor}(X, Y)$.

MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

