Variance; Continuous Random Variables 18.05 Spring 2014

Variance and standard deviation

X a discrete random variable with mean $E(X)=\mu$.

- Meaning: spread of probability mass about the mean.
- Definition as expectation (weighted sum):

$$
\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)
$$

- Computation as sum:

$$
\operatorname{Var}(X)=\sum_{i=1}^{n} p\left(x_{i}\right)\left(x_{i}-\mu\right)^{2}
$$

- Standard deviation $\sigma=\sqrt{\operatorname{Var}(X)}$.

Units for standard deviation $=$ units of X.

Concept question

The graphs below give the pmf for 3 random variables. Order them by size of standard deviation from biggest to smallest. (Assume x has the same units in all 3.)

(B)
(C)

1. ABC
2. ACB
3. BAC
4. BCA
5. $C A B$
6. CBA

Computation from tables

Example. Compute the variance and standard deviation of X.

$$
\begin{array}{r|ccccc}
\text { values } x & 1 & 2 & 3 & 4 & 5 \\
\hline \operatorname{pmf} p(x) & 1 / 10 & 2 / 10 & 4 / 10 & 2 / 10 & 1 / 10
\end{array}
$$

Concept question

Which pmf has the bigger standard deviation? (Assume w and y have the same units.)

$$
\text { 1. } Y \quad \text { 2. } W
$$

Table question: make probability tables for Y and W and compute their standard deviations.

Concept question

True or false: If $\operatorname{Var}(X)=0$ then X is constant.

1. True 2. False

Algebra with variances

If a and b are constants then

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X), \quad \sigma_{a X+b}=|a| \sigma_{X}
$$

If X and Y are independent random variables then

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Board questions

1. Prove: if $X \sim \operatorname{Bernoulli}(p)$ then $\operatorname{Var}(X)=p(1-p)$.
2. Prove: if $X \sim \operatorname{bin}(n, p)$ then $\operatorname{Var}(X)=n p(1-p)$.
3. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are independent and all have the same standard deviation $\sigma=2$. Let \bar{X} be the average of X_{1}, \ldots, X_{n}.

What is the standard deviation of \bar{X} ?

Continuous random variables

- Continuous range of values:

$$
[0,1],[a, b],[0, \infty),(-\infty, \infty)
$$

- Probability density function (pdf)

$$
f(x) \geq 0 ; \quad P(c \leq x \leq d)=\int_{c}^{d} f(x) d x
$$

Units for the pdf are $\frac{\text { prob. }}{\text { unit of } x}$

- Cumulative distribution function (cdf)

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t
$$

Visualization

pdf and probability

Properties of the cdf

(Same as for discrete distributions)

- (Definition) $F(x)=P(X \leq x)$.
- $0 \leq F(x) \leq 1$.
- non-decreasing.
- 0 to the left: $\lim _{x \rightarrow-\infty} F(x)=0$.
- 1 to the right: $\lim _{x \rightarrow \infty} F(x)=1$.
- $P(c<X \leq d)=F(d)-F(c)$.
- $F^{\prime}(x)=f(x)$.

Board questions

1. Suppose X has range $[0,2]$ and $\operatorname{pdf} f(x)=c x^{2}$.
(a) What is the value of c.
(b) Compute the $\operatorname{cdf} F(x)$.
(c) Compute $P(1 \leq X \leq 2)$.
2. Suppose Y has range $[0, b]$ and $\operatorname{cdf} F(y)=y^{2} / 9$.
(a) What is b ?
(b) Find the pdf of Y.

Concept questions

Suppose X is a continuous random variable.
(a) What is $P(a \leq X \leq a)$?
(b) What is $P(X=0)$?
(c) Does $P(X=a)=0$ mean X never equals a ?

Concept question

Which of the following are graphs of valid cumulative distribution functions?

Add the numbers of the valid cdf's and click that number.

Exponential Random Variables

Parameter: λ (called the rate parameter).
Range: $\quad[0, \infty)$.
Notation: $\operatorname{exponential}(\lambda)$ or $\exp (\lambda)$.
Density: $\quad f(x)=\lambda \mathrm{e}^{-\lambda x}$ for $0 \leq x$.
Models: Waiting time

Continuous analogue of geometric distribution -memoryless!

Board question

I've noticed that taxis drive past 77 Mass. Ave. on the average of once every 10 minutes.
Suppose time spent waiting for a taxi is modeled by an exponential random variable

$$
X \sim \text { Exponential }(1 / 10) ; \quad f(x)=\frac{1}{10} \mathrm{e}^{-x / 10}
$$

(a) Sketch the pdf of this distribution
(b) Shade the region which represents the probability of waiting between 3 and 7 minutes
(c) Compute the probability of waiting between between 3 and 7 minutes for a taxi
(d) Compute and sketch the cdf.

MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

