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Reading Review 

Random variable X assigns a number to each outcome: 

X : Ω → R 

“X = a” denotes the event {ω | X (ω) = a}. 

Probability mass function (pmf) of X is given by 

p(a) = P(X = a). 

Cumulative distribution function (cdf) of X is given by 

F (a) = P(X ≤ a). 
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Example from class 

Suppose X is a random variable with the following table. 

values of X : -2 -1 0 4 
pmf p(a): 1/4 1/4 1/4 1/4 
cdf F (a): 1/4 2/4 3/4 4/4 

The cdf is the probability ‘accumulated’ from the left. 

Examples. F (−1) = 2/4, F (0) = 3/4, F (0.5) = 3/4, F (−5) = 0, 
F (5) = 1. 

Properties of F (a): 

1. Nondecreasing 

2. Way to the left, i.e. as a → −∞), F is 0 

3. Way to the right, i.e. as a → ∞, F is 1. 
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Concept Question: cdf and pmf 

X a random variable. 

values of X : 1 3 5 7 
cdf F (a): 0.5 0.75 0.9 1 

1. What is P(X ≤ 3)?
 

(a) 0.15 (b) 0.25 (c) 0.5 (d) 0.75 

2. What is P(X = 3) 
(a) 0.15 (b) 0.25 (c) 0.5 (d) 0.75 

1. answer: (d) 0.75. P(X ≤ 3) = F (3) = 0.75. 
2. answer: (b) P(X = 3) = F (3) − F (1) = 0.75 − 0.5 = 0.25. 
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Deluge of discrete distributions 

Bernoulli(p) =	 1 (success) with probability p,
 
0 (failure) with probability 1 − p.
 

In more neutral language: 
Bernoulli(p) = 1 (heads) with probability p, 

0 (tails) with probability 1 − p. 

Binomial(n,p) = # of successes in n independent 
Bernoulli(p) trials. 

Geometric(p) = # of tails before first heads in a 
sequence of indep. Bernoulli(p) trials. 

(Neutral language avoids confusing whether we want the number of 
successes before the first failure or vice versa.) 
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Concept Question 
1. Let X ∼ binom(n, p) and Y ∼ binom(m, p) be 
independent. Then X + Y follows: 
(a) binom(n + m, p) (b) binom(nm, p) 
(c) binom(n + m, 2p) (d) other 

2. Let X ∼ binom(n, p) and Z ∼ binom(n, q) be 
independent. Then X + Z follows: 
(a) binom(n, p + q) (b) binom(n, pq) 
(c) binom(2n, p + q) (d) other 
1. answer: (a). Each binomial random variable is a sum of independent 
Bernoulli(p random variables, so their sum is also a sum of Bernoulli(p) 
r.v.’s. 
2. answer: (d) This is different from problem 1 because we are combining 
Bernoulli(p) r.v.’s with Bernoulli(q) r.v.’s. This is not one of the named 
random variables we know about. 
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Board Question: Find the pmf
 

X = # of successes before the second failure of a 
sequence of independent Bernoulli(p) trials. 

Describe the pmf of X . 

Hint: this requires some counting. 

Answer is on the next slide. 
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Solution
 

X takes values 0, 1, 2, . . . . The pmf is p(n) = (n + 1)pn(1 − p)2 . 

For concreteness, we’ll derive this formula for n = 3. Let’s list the 
outcomes with three successes before the second failure. Each must have 
the form 

F 

with three S and one F in the first four slots. So we just have to choose 
which of these four slots contains the F : 

{FSSSF , SFSSF , SSFSF , SSSFF }  4In other words, there are 1 = 4 = 3 + 1 such outcomes. Each of these 
outcomes has three S and two F , so probability p3(1 − p)2 . Therefore 

p(3) = P(X = 3) = (3 + 1)p 3(1 − p)2 . 

The same reasoning works for general n.
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Dice simulation: geometric(1/4)
 

Roll the 4-sided die repeatedly until you roll a 1.
 
Click in X = # of rolls BEFORE the 1.
 
(If X is 9 or more click 9.)
 

Example: If you roll (3, 4, 2, 3, 1) then click in 4.
 
Example: If you roll (1) then click 0.
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Fiction
 

Gambler’s fallacy: [roulette] if black comes up several 
times in a row then the next spin is more likely to be red. 

Hot hand: NBA players get ‘hot’. 
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Fact
 

P(red) remains the same. 

The roulette wheel has no memory. (Monte Carlo, 1913). 

The data show that player who has made 5 shots in a row 
is no more likely than usual to make the next shot. 
(Currently, there seems to be some disagreement about 
this.) 
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Gambler’s fallacy
 

“On August 18, 1913, at the casino in Monte Carlo, black came up a 
record twenty-six times in succession [in roulette]. [There] was a 
near-panicky rush to bet on red, beginning about the time black had 
come up a phenomenal fifteen times. In application of the maturity 
[of the chances] doctrine, players doubled and tripled their stakes, this 
doctrine leading them to believe after black came up the twentieth 
time that there was not a chance in a million of another repeat. In the 
end the unusual run enriched the Casino by some millions of francs.” 
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Hot hand fallacy
 

An NBA player who made his last few shots is more likely 
than his usual shooting percentage to make the next one? 

See The Hot Hand in Basketball: On the Misperception of Random 
Sequences by Gilovish, Vallone and Tversky. (A link that worked when 
these slides were written is 
http://www.cs.colorado.edu/~mozer/Teaching/syllabi/7782/ 
readings/gilovich%20vallone%20tversky.pdf) 

(There seems to be some controversy about this. Some statisticians feel 
that the authors of the above paper erred in their analysis of the data and 
the data do support the notion of a hot hand in basketball.) 
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Amnesia
 

Show that Geometric(p) is memoryless, i.e. 

P(X = n + k | X ≥ n) = P(X = k) 

Explain why we call this memoryless. 

Explanation given on next slide. 
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Proof that geometric(p) is memoryless 

One method is to look at the tree for this distribution. Here we’ll just use
 
the formula that defines conditional probability. To do this we need to find
 
probabilities for the events used in the formula.
 

Let A be ‘X = n + k’ and let B be ‘X ≥ n’.
 

We have the following:
 

A ∩ B = A. This is because X = n + k guarantees X ≥ n. Thus, 
(P(A ∩ B) = P(A) = p n + k)(1 − p) 

nP(B) = p . This is because B consists of all sequences that start 
with n successes. 

We can now compute the conditional probability 

P(A ∩ B) pn+k (1 − p)
P(A|B) = = = p k (1 − p) = P(X = k). 

P(B) pn 

This is what we wanted to show!
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Expected Value 
X is a random variable takes values x1, x2, . . . , xn: 
The expected value of X is defined by 

n= 
E (X ) = p(x1)x1 + p(x2)x2 + . . . + p(xn)xn = p(xi ) xi 

i=1 

It is a weighted average. 
It is a measure of central tendency. 

Properties of E (X ) 

E (X + Y ) = E (X ) + E (Y ) (linearity I) 
E (aX + b) = aE (X ) + b (linearity II) = 
E (h(X )) = h(xi ) p(xi )
 

i
 
January 1, 2017       17 / 26



Meaning of expected value 
What is the expected average of one roll of a die? 
answer: Suppose we roll it 5 times and get (3, 1, 6, 1, 2). To find the 
average we add up these numbers and divide by 5: ave = 2.6. With so few 
rolls we don’t expect this to be representative of what would usually 
happen. So let’s think about what we’d expect from a large number of 
rolls. To be specific, let’s (pretend to) roll the die 600 times. 

We expect that each number will come up roughly 1/6 of the time. Let’s 
suppose this is exactly what happens and compute the average. 

value: 1 2 3 4 5 6 
expected counts: 100 100 100 100 100 100 

The average of these 600 values (100 ones, 100 twos, etc.) is then 

100 · 1 + 100 · 2 + 100 · 3 + 100 · 4 + 100 · 5 + 100 · 6 
average = 

600 
1 1 1 1 1 1 

= · 1 + · 2 + · 3 + · 4 + · 5 + · 6 = 
6 6 6 6 6 6 

3.5.
 

This is the ‘expected average’. We will call it the expected value
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Examples 
Example 1. Find E (X ) 
1. X : 3 4 5 6 

2. pmf: 1/4 1/2 1/8 1/8 

3. E (X ) = 3/4 + 4/2 + 5/8 + 6/8 = 33/8 

Example 2. Suppose X ∼ Bernoulli(p). Find E (X ). 
1. X : 0 1 

2. pmf:	 1 − p p 

3. E (X ) = (1 − p) · 0 + p · 1 = p. 

Example 3. Suppose X ∼ Binomial(12, .25). Find E (X ). 
X	 = X1 + X2 + . . . + X12, where Xi ∼ Bernoulli(.25). Therefore 

E (X ) = E (X1) + E (X2) + . . . E (X12) = 12 · (.25) = 3 

In general if X ∼ Binomial(n, p) then E (X ) = np.
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Class example 
We looked at the random variable X with the following table top 2 lines. 
1. X : -2 -1 0 1 2 

2. pmf: 1/5 1/5 1/5 1/5 1/5 

3. E (X ) = -2/5 - 1/5 + 0/5 + 1/5 + 2/5 = 0 

4. X 2: 4 1 0 1 4 
5. E (X 2) = 4/5 + 1/5 + 0/5 + 1/5 + 4/5 = 2 

Line 3 computes E (X ) by multiplying the probabilities in line 2 by the 
values in line 1 and summing. 

Line 4 gives the values of X 2 . 

Line 5 computes E (X 2) by multiplying the probabilities in line 2 by the 
values in line 4 and summing. This illustrates the use of the formula = 

E (h(X )) = h(xi ) p(xi ). 
i 

Continued on the next slide.
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Class example continued
 

Notice that in the table on the previous slide, some values for X 2 are 
repeated. For example the value 4 appears twice. Summing all the 
probabilities where X 2 = 4 gives P(X 2 = 4) = 2/5. Here’s the full table 
for X 2 

1. X 2: 4 1 0 
2. pmf: 2/5 2/5 1/5 
3. E (X 2) = 8/5 + 2/5 + 0/5 = 2 

Here we used the definition of expected value to compute E (X 2). Of 
course, we got the same expected value E (X 2) = 2 as we did earlier. 
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Board Question: Interpreting Expectation
 

(a) Would you accept a gamble that offers a 10% chance 
to win $95 and a 90% chance of losing $5? 

(b) Would you pay $5 to participate in a lottery that 
offers a 10% percent chance to win $100 and a 90% 
chance to win nothing? 

• Find the expected value of your change in assets in each 
case? 

Discussion on next slide. 
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Discussion
 
Framing bias / cost versus loss. The two situations are identical, with an 
expected value of gaining $5. In a study, 132 undergrads were given these 
questions (in different orders) separated by a short filler problem. 55 gave 
different preferences to the two events. Of these, 42 rejected (a) but 
accepted (b). One interpretation is that we are far more willing to pay a 
cost up front than risk a loss. (See Judgment under uncertainty: heuristics 
and biases by Tversky and Kahneman.) 

Loss aversion and cost versus loss sustain the insurance industry: people 
pay more in premiums than they get back in claims on average (otherwise 
the industry wouldn’t be sustainable), but they buy insurance anyway to 
protect themselves against substantial losses. Think of it as paying $1 
each year to protect yourself against a 1 in 1000 chance of losing $100 
that year. By buying insurance, the expected value of the change in your 
assets in one year (ignoring other income and spending) goes from 
negative 10 cents to negative 1 dollar. But whereas without insurance you 
might lose $100, with insurance you always lose exactly $1. 
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Board Question 
Suppose (hypothetically!) that everyone at your table got up, ran 
around the room, and sat back down randomly (i.e., all seating 
arrangements are equally likely). 

What is the expected value of the number of people sitting in their 
original seat? 

(We will explore this with simulations in Friday Studio.) 

Neat fact: A permutation in which nobody returns to their original seat is 
called a derangement. The number of derangements turns out to be the 
nearest integer to n!/e. Since there are n! total permutations, we have: 

n!/e 
P(everyone in a different seat) ≈ = 1/e ≈ 0.3679. 

n! 

It’s surprising that the probability is about 37% regardless of n, and that it 
converges to 1/e as n goes to infinity. 

http://en.wikipedia.org/wiki/Derangement 
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Solution 
Number the people from 1 to n. Let Xi be the Bernoulli random variable 
with value 1 if person i returns to their original seat and value 0 otherwise. 
Since person i is equally likely to sit back down in any of the n seats, the 
probability that person i returns to their original seat is 1/n. Therefore 
Xi ∼ Bernoulli(1/n) and E (Xi ) = 1/n. Let X be the number of people 
sitting in their original seat following the rearrangement. Then 

X = X1 + X2 + · · · + Xn. 

By linearity of expected values, we have 
n n= = 

E (X ) = E (Xi ) = 1/n = 1. 
i=1 i=1 

• It’s neat that the expected value is 1 for any n. 
• If n = 2, then both people either retain their seats or exchange seats. So 
P(X = 0) = 1/2 and P(X = 2) = 1/2. In this case, X never equals E (X ). 
• The Xi are not independent (e.g. for n = 2, X1 = 1 implies X2 = 1). 
• Expectation behaves linearly even when the variables are dependent. 
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