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Board Question 

Deck of 52 cards 

13 ranks: 2, 3, . . . , 9, 10, J, Q, K, A 

4 suits: ♥, ♠, ♦, ♣, 

Poker hands 

Consists of 5 cards 

A one-pair hand consists of two cards having one rank and the 
remaining three cards having three other ranks
 

Example: {2♥, 2♠, 5♥, 8♣, K♦}
 

Question 

(a) How many different 5 card hands have exactly one pair? 

Hint: practice with how many 2 card hands have exactly one pair. 
Hint for hint: use the rule of product. 

(b) What is the probability of getting a one pair poker hand? 
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Answer to board question 
We can do this two ways as combinations or permutations. The keys are: 
1. be consistent 
2. break the problem into a sequence of actions and use the rule of
 
product.
 
Note, there are many ways to organize this. We will break it into very
 
small steps in order to make the process clear.
 

Combinations approach 

a) Count the number of one-pair hands, where the order they are dealt 
doesn’t matter. 
Action 1. Choose the rank of the pair: 13 different ranks, choosing 1, so o13 ways to do this. 1 
Action 2. Choose 2 cards from this rank: 4 cards in a rank, choosing 2, so o4 ways to do this. 2 
Action 3. Choose the 3 cards of different ranks: 12 remaining ranks, so o12 

3 ways to do this. 

(Continued on next slide.)
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Combination solution continued
 
Action 4. Choose 1 card from each of these ranks: 4 cards in each rank so
 o34 

1 ways to do this. 

answer: (Using the rule of product.)      
13 4 12 · · · 43 = 1098240 
1 2 3

b) To compute the probability we have to stay consistent and count 
combinations. To make a 5 card hand we choose 5 cards out of 52, so 
there are   

52 
= 2598960 

5

possible hands. Since each hand is equally likely the probability of a 
one-pair hand is 

1098240/2598960 = 0.42257. 

On the next slide we redo this problem using permutations.
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Permutation approach 
This approach is a little trickier. We include it to show that there is
 
usually more than one way to count something.
 

a) Count the number of one-pair hands, where we keep track of the order
 
they are dealt.
 
Action 1. (This one is tricky.) Choose the positions in the hand that will
 o5hold the pair: 5 different positions, so 2 ways to do this. 
Action 2.	 Put a card in the first position of the pair: 52 cards, so 52 ways 

to do this. 
Action 3.	 Put a card in the second position of the pair: since this has to 

match the first card, there are only 3 ways to do this. 
Action 4.	 Put a card in the first open slot: this can’t match the pair so 

there are 48 ways to do this. 
Action 5.	 Put a card in the next open slot: this can’t match the pair or 

the previous card, so there 44 ways to do this. 
Action 6.	 Put a card in the last open slot: there are 40 ways to do this. 

(Continued on next slide.) 

(
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Permutation approach continued 
answer: (Using the rule of product.) 

5 · 52 · 3 · 48 · 44 · 40 = 131788800 
2 

ways to deal a one-pair hand where we keep track of order. 

b) There are 

52P5 = 52 · 51 · 50 · 49 · 48 = 311875200 

five card hands where order is important. 

Thus, the probability of a one-pair hand is 

131788800/311875200 = 0.42257. 

(Both approaches give the same answer.)
 

( )
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Clicker Test 

Set your clicker channel to 41. 

Do you have your clicker with you? 

No = 0 

Yes = 1 
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Probability Cast
 

Introduced so far 

Experiment: a repeatable procedure 

Sample space: set of all possible outcomes S (or Ω). 

Event: a subset of the sample space. 

Probability function, P(ω): gives the probability for 
each outcome ω ∈ S 

1. Probability is between 0 and 1 
2. Total probability of all possible outcomes is 1. 
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Example (from the reading)
 

Experiment: toss a fair coin, report heads or tails.
 

Sample space: Ω = {H , T }.
 
Probability function: P(H) = .5, P(T ) = .5.
 

Use tables: 
Outcomes H T
 
Probability
 1/2 1/2 

(Tables can really help in complicated examples)
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Discrete sample space 

Discrete = listable 

Examples: 

{a, b, c, d} (finite) 

{0, 1, 2, . . . } (infinite) 
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Events
 

Events are sets: 

Can describe in words 

Can describe in notation 

Can describe with Venn diagrams 

Experiment: toss a coin 3 times. 

Event:
 
You get 2 or more heads = { HHH, HHT, HTH, THH}
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CQ: Events, sets and words
 

Experiment: toss a coin 3 times. 

Which of following equals the event “exactly two heads”? 

A = {THH , HTH , HHT , HHH}

B = {THH , HTH , HHT }

C = {HTH , THH}
 

(1) A (2) B (3) C (4) A or B 

answer: : 2) B.
 
The event “exactly two heads” determines a unique subset, containing all
 
outcomes that have exactly two heads.
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CQ: Events, sets and words
 

Experiment: toss a coin 3 times. 

Which of the following describes the event 
{THH , HTH , HHT }? 

(1) “exactly one head” 
(2) “exactly one tail” 
(3) “at most one tail” 
(4) none of the above 

answer: (2) “exactly one tail”
 
Notice that the same event E ⊂ Ω may be described in words in multiple
 
ways (“exactly 2 heads” and “exactly 1 tail”).
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CQ: Events, sets and words 

Experiment: toss a coin 3 times. 

The events “exactly 2 heads” and “exactly 2 tails” are 
disjoint. 

(1) True (2) False 

answer: True: {THH, HTH, HHT } ∩ {TTH, THT , HTT } = ∅. 
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CQ: Events, sets and words
 

Experiment: toss a coin 3 times. 

The event “at least 2 heads” implies the event “exactly 
two heads”. 

(1) True (2) False 

False. It’s the other way around: 
{THH, HTH, HHT } ⊂ {THH, HTH, HHT , HHH}. 
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Probability rules in mathematical notation 

Sample space: S = {ω1, ω2, . . . , ωn} 

Outcome: ω ∈ S 

Probability between 0 and 1: 0 ≤ P(ω) ≤ 1 
n  

Total probability is 1: P(ωj ) = 1, P(ω) = 1 
j=1 ω∈S  

Event A: P(A) = P(ω) 
ω∈A 
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Probability and set operations on events 

Events A, L, R 

Rule 1. Complements: P(Ac ) = 1 − P(A). 

Rule 2. Disjoint events: If L and R are disjoint then 
P(L ∪ R) = P(L) + P(R). 

Rule 3. Inclusion-exclusion principle: For any L and R : 
P(L ∪ R) = P(L) + P(R) − P(L ∩ R). 

A

Ac

Ω = A ∪Ac, no overlap

L R

L ∪R, no overlap

L R

L ∪R, overlap = L ∩R
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Table question
 

Class has 50 students 

20 male (M), 25 brown-eyed (B) 

For a randomly chosen student what is the range of 
possible values for p = P(M ∪ B)? 

(a) p ≤ .4 
(b) .4 ≤ p ≤ .5 
(c) .4 ≤ p ≤ .9 
(d) .5 ≤ p ≤ .9 
(e) .5 ≤ p 

answer: (d) .5 ≤ p ≤ .9 
Explanation on next slide. 
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Solution to CQ
 

The easy way to answer this is that A ∪ B has a minumum of 25 members 
(when all males are brown-eyed) and a maximum of 45 members (when no 
males have brown-eyes). So, the probability ranges from .5 to .9 
Thinking about it in terms of the inclusion-exclusion principle we have 

P(M ∪ B) = P(M) + P(B) − P(M ∩ B) = .9 − P(M ∩ B). 

So the maximum possible value of P(M ∪ B) happens if M and B are 
disjoint, so P(M ∩ B) = 0. The minimum happens when M ⊂ B, so 
P(M ∩ B) = P(M) = .4. 
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Table Question 
Experiment: 

1. Your table should make 9 rolls of a 20-sided die (one 
each if the table is full). 

2. Check if all rolls at your table are distinct. 

Repeat the experiment five times and record the results. 

For this experiment, how would you define the sample 
space, probability function, and event? 

Compute the true probability that all rolls (in one trial) 
are distinct and compare with your experimental result. 

answer: 1 − (20 · 19 · · · 13 · 12)/(209) = 0.881. (The explanation is on 
the next frame.) 
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Board Question Solution 
For the sample space S we will take all sequences of 9 numbers between 1 
and 20. (We are assuming there are 9 people at table.) We find the size of 
S using the rule of product. There are 20 ways to choose the first number 
in the sequence, followed by 20 ways to choose the second, etc. Thus, 
|S | = 209 . 
It is sometimes easier to calculate the probability of an event indirectly by 
calculating the probability of the complement and using the formula 

P(A) = 1 − P(Ac ). 

In our case, A is the event ‘there is a match’, so Ac is the event ‘there is 
no match’. We can use the rule of product to compute |Ac | as follows. 
There are 20 ways to choose the first number, then 19 ways to choose the 
second, etc. down to 12 ways to choose the ninth number. Thus, we have 

|Ac | = 20 · 19 · 18 · 17 · 16 · 15 · 14 · 13 · 12 

That is |Ac | = 20P9. 
Putting this all together 

20 · 19 · 18 · 17 · 16 · 15 · 14 · 13 · 12 
P(A) = 1 − P(Ac ) = 1 − = .881 

209 
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Jon’s dice
 

Jon has three six-sided dice with unusual numbering.
 

A game consists of two players each choosing a die. They 
roll once and the highest number wins. 

Which die would you choose? 
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Board Question
 

1. Make probability tables for the red and which dice. 
2. Make a probability table for the product sample space of red and 
white. 
3. Compute the probability that red beats white. 

4. Pair up with another group. Have one group compare red vs. 
green and the other compare green vs. red. Based on the three 
comparisons rank the dice from best to worst. 
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Computations for solution
 
Red die White die Green die 

Outcomes 3 6 2 5 1 4 
Probability 5/6 1/6 3/6 3/6 1/6 5/6 

The 2 × 2 tables show pairs of dice. 

Each entry is the probability of seeing the pair of numbers 
corresponding to that entry. 

The color gives the winning die for that pair of numbers. (We 
use black instead of white when the white die wins.) 

Wh
2 

ite 
5 

Gr
1 

een 
4 

Red 3 
6 

15/36 
3/36 

15/36 
3/36 

5/36 
1/36 

25/36 
5/36 

Green 1 
4 

3/36 
15/36 

3/36 
15/36 
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Answer to board question continued
 

Wh
2 

ite 
5 

Gr
1 

een 
4 

Red 3 
6 

15/36 
3/36 

15/36 
3/36 

5/36 
1/36 

25/36 
5/36 

Green 1 
4 

3/36 
15/36 

3/36 
15/36 

The three comparisons are: 
P(red beats white) = 21/36 = 7/12 
P(white beats green) = 21/36 = 7/12 
P(green beats red) = 25/36 

Thus: red is better than white is better than green is better than red. 

There is no best die: the property of being ‘better than’ is 
non-transitive. 
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Concept Question
 

Lucky Larry has a coin that you’re quite sure is not fair. 

He will flip the coin twice 

It’s your job to bet whether the outcomes will be the 
same (HH, TT) or different (HT, TH). 

Which should you choose? 

1. Same 
2. Different 
3. It doesn’t matter, same and different are equally likely 
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Board Question 

Lucky Larry has a coin that you’re quite sure is not fair. 

He will flip the coin twice 

It’s your job to bet whether the outcomes will be the 
same (HH, TT) or different (HT, TH). 

Which should you choose? 

1. Same 2. Different 3. Doesn’t matter 

Question: Let p be the probability of heads and use 
probability to answer the question. 

(If you don’t see the symbolic algebra try p = .2, p=.5)
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Solution 
answer: 1. Same (same is more likely than different) 
The key bit of arithmetic is that if a  = b then 

2(a − b)2 > 0 ⇔ a + b2 > 2ab. 

To keep the notation cleaner, let’s use P(T ) = (1 − p) = q. 
Since the flips are independent (we’ll discuss this next week) the 
probabilities multiply. This gives the following 2 × 2 table. 

second flip 
H T 

first flip H p2 pq 
T qp q2 

So, P(same) = p2 + q2 and P(diff) = 2pq. Since the coin is unfair we 
know p  Now we use our key bit of arithmetic to say = q. 

2 2 p + q > 2pq ⇒ P(same) > P(different). 

QED
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