Linear Regression 18.05 Spring 2014

Agenda

- Fitting curves to bivariate data
- Measuring the goodness of fit
- The fit vs. complexity tradeoff
- Regression to the mean
- Multiple linear regression

Modeling bivariate data as a function + noise

Ingredients

- Bivariate data $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n).$
- Model: $y_i = f(x_i) + E_i$ where f(x) is some function, E_i random error.
- Total squared error: $\sum_{i=1}^{n} E_i^2 = \sum_{i=1}^{n} (y_i f(x_i))^2$

Model allows us to predict the value of y for any given value of x.

- x is called the independent or predictor variable.
- y is the dependent or response variable.

Examples of f(x)

• lines:
$$y = ax + b + E$$

• polynomials:
$$y = ax^2 + bx + c + E$$

• other:
$$y = a/x + b + E$$

• other:
$$y = a\sin(x) + b + E$$

Simple linear regression: finding the best fitting line

- Bivariate data $(x_1, y_1), \ldots, (x_n, y_n)$.
- Simple linear regression: fit a line to the data

$$y_i = ax_i + b + E_i$$
, where $E_i \sim N(0, \sigma^2)$

and where σ is a fixed value, the same for all data points.

- Total squared error: $\sum_{i=1}^{n} E_i^2 = \sum_{i=1}^{n} (y_i ax_i b)^2$
- Goal: Find the values of a and b that give the 'best fitting line'.
- Best fit: (least squares)
 The values of a and b that minimize the total squared error.

Linear Regression: finding the best fitting polynomial

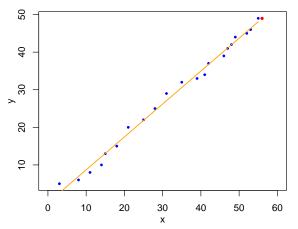
- Bivariate data: $(x_1, y_1), ..., (x_n, y_n)$.
- Linear regression: fit a parabola to the data

$$y_i = ax_i^2 + bx_i + c + E_i$$
, where $E_i \sim N(0, \sigma^2)$

and where σ is a fixed value, the same for all data points.

- Total squared error: $\sum_{i=1}^{n} E_i^2 = \sum_{i=1}^{n} (y_i ax_i^2 bx_i c)^2.$
- Goal:
 Find the values of a, b, c that give the 'best fitting parabola'.
- Best fit: (least squares)
 The values of a, b, c that minimize the total squared error.
 Can also fit higher order polynomials.

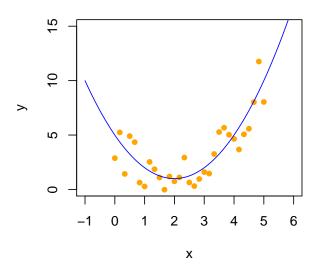
Stamps



Stamp cost (cents) vs. time (years since 1960) (Red dot = 49 cents is predicted cost in 2016.)

(Actual cost of a stamp dropped from 49 to 47 cents on 4/8/16.)

Parabolic fit



Board question: make it fit

Bivariate data:

- **1.** Do (simple) linear regression to find the best fitting line. Hint: minimize the total squared error by taking partial derivatives with respect to *a* and *b*.
- 2. Do linear regression to find the best fitting parabola.
- **3.** Set up the linear regression to find the best fitting cubic. but don't take derivatives.
- **4.** Find the best fitting exponential $y = e^{ax+b}$.

Hint: take ln(y) and do simple linear regression.

What is linear about linear regression?

Linear in the parameters a, b, \ldots

$$y = ax + b.$$
$$y = ax^2 + bx + c.$$

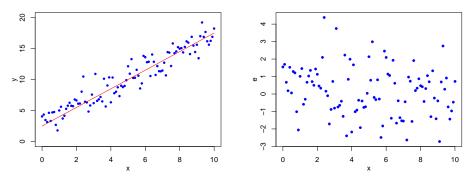
It is **not** because the curve being fit has to be a straight line —although this is the simplest and most common case.

Notice: in the board question you had to solve a system of simultaneous linear equations.

Fitting a line is called simple linear regression.

Homoscedastic

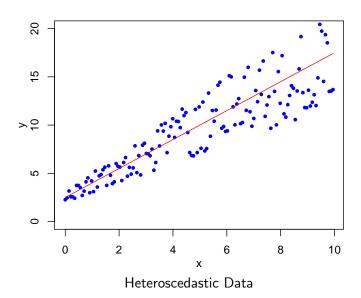
BIG ASSUMPTIONS: the E_i are independent with the same variance σ^2 .



Regression line (left) and residuals (right).

Homoscedasticity = uniform spread of errors around regression line.

Heteroscedastic



Formulas for simple linear regression

Model:

$$y_i = ax_i + b + E_i$$
 where $E_i \sim N(0, \sigma^2)$.

Using calculus or algebra:

$$\hat{a} = rac{s_{xy}}{s_{xx}}$$
 and $\hat{b} = \bar{y} - \hat{a}\,\bar{x},$

where

$$ar{x} = rac{1}{n} \sum x_i \quad s_{xx} = rac{1}{n-1} \sum (x_i - ar{x})^2$$
 $ar{y} = rac{1}{n} \sum y_i \quad s_{xy} = rac{1}{n-1} \sum (x_i - ar{x})(y_i - ar{y}).$

WARNING: This is just for simple linear regression. For polynomials and other functions you need other formulas.

Board Question: using the formulas plus some theory

Bivariate data: (1,3), (2,1), (4,4)

- **1.(a)** Calculate the sample means for x and y.
- **1.(b)** Use the formulas to find a best-fit line in the xy-plane.

$$\hat{a} = \frac{s_{xy}}{s_{xx}}$$
 $\hat{b} = \overline{y} - \hat{a}\overline{x}$ $s_{xy} = \frac{1}{n-1} \sum (x_i - \overline{x})(y_i - \overline{y})$ $s_{xx} = \frac{1}{n-1} \sum (x_i - \overline{x})^2$.

- **2.** Show the point $(\overline{x}, \overline{y})$ is always on the fitted line.
- **3.** Under the assumption $E_i \sim N(0, \sigma^2)$ show that the least squares method is equivalent to finding the MLE for the parameters (a, b).

Hint:
$$f(y_i | x_i, a, b) \sim N(ax_i + b, \sigma^2)$$
.

Measuring the fit

- $y = (y_1, \dots, y_n)$ = data values of the response variable.
- $\hat{y} = (\hat{y}_1, \dots, \hat{y}_n) =$ 'fitted values' of the response variable.
 - TSS = $\sum (y_i \overline{y})^2$ = total sum of squares = total variation.
 - RSS = $\sum (y_i \hat{y}_i)^2$ = residual sum of squares. RSS = unexplained by model squared error (due to random fluctuation)
 - RSS/TSS = unexplained fraction of the total error.
 - $R^2 = 1 RSS/TSS$ is measure of goodness-of-fit
 - R^2 is the fraction of the variance of y explained by the model.

Overfitting a polynomial

- Increasing the degree of the polynomial increases R^2
- Increasing the degree of the polynomial increases the complexity of the model.
- The optimal degree is a tradeoff between goodness of fit and complexity.
- If all data points lie on the fitted curve, then $y = \hat{y}$ and $R^2 = 1$.

R demonstration!

Outliers and other troubles

Question: Can one point change the regression line significantly?

Use mathlet

http://mathlets.org/mathlets/linear-regression/

Regression to the mean

- Suppose a group of children is given an IQ test at age 4.
 One year later the same children are given another IQ test.
- Children's IQ scores at age 4 and age 5 should be positively correlated.
- Those who did poorly on the first test (e.g., bottom 10%) will tend to show improvement (i.e. regress to the mean) on the second test.
- A completely useless intervention with the poor-performing children might be misinterpreted as causing an increase in their scores.
- Conversely, a reward for the top-performing children might be misinterpreted as causing a decrease in their scores.

This example is from Rice Mathematical Statistics and Data Analysis

A brief discussion of multiple linear regression

Multivariate data: $(x_{i,1}, x_{i,2}, \ldots, x_{i,m}, y_i)$ (n data points: $i = 1, \ldots, n$)

Model
$$\hat{y}_i = a_1 x_{i,1} + a_2 x_{i,2} + \ldots + a_m x_{i,m}$$

 $x_{i,j}$ are the explanatory (or predictor) variables.

 y_i is the response variable.

The total squared error is

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - a_1 x_{i,1} - a_2 x_{i,2} - \ldots - a_m x_{i,m})^2$$

MIT OpenCourseWare https://ocw.mit.edu

18.05 Introduction to Probability and Statistics Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.