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Agenda

Fitting curves to bivariate data

Measuring the goodness of fit

The fit vs. complexity tradeoff

Regression to the mean

Multiple linear regression
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Modeling bivariate data as a function + noise

Ingredients

Bivariate data (x1, y1), (x2, y2), . . . , (xn, yn).

Model: yi = f (xi) + Ei

where f (x) is some function, Ei random error.∑n
Total squared error: E 2

i =
∑n

(y 2
i

i=1 i=1

− f (xi))

Model allows us to predict the value of y for any given value of x .
• x is called the independent or predictor variable.

• y is the dependent or response variable.
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Examples of f (x)

lines: y = ax + b + E

polynomials: y = ax2 + bx + c + E

other: y = a/x + b + E

other: y = a sin(x) + b + E
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Simple linear regression: finding the best fitting line

Bivariate data (x1, y1), . . . , (xn, yn).

Simple linear regression: fit a line to the data

yi = axi + b + Ei , where Ei ∼ N(0, σ2)

and where σ is a fixed value, the same for all data points.∑n n

Total squared error: E 2
i =

i=1

∑
(yi

i=1

− axi − b)2

Goal: Find the values of a and b that give the ‘best fitting line’.

Best fit: (least squares)
The values of a and b that minimize the total squared error.
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Linear Regression: finding the best fitting polynomial

Bivariate data: (x1, y1), . . . , (xn, yn).

Linear regression: fit a parabola to the data

yi = ax2i + bxi + c + Ei , where Ei ∼ N(0, σ2)

and where σ is a fixed value, the same for all data points.∑n n

Total squared error: E 2
i =

∑
(yi − ax2i − bxi − c)2.

i=1 i=1

Goal:
Find the values of a, b, c that give the ‘best fitting parabola’.

Best fit: (least squares)
The values of a, b, c that minimize the total squared error.

Can also fit higher order polynomials.
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Stamp cost (cents) vs. time (years since 1960)
(Red dot = 49 cents is predicted cost in 2016.)

(Actual cost of a stamp dropped from 49 to 47 cents on 4/8/16.)
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Parabolic fit
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Board question: make it fit

Bivariate data:
(1, 3), (2, 1), (4, 4)

1. Do (simple) linear regression to find the best fitting line.

Hint: minimize the total squared error by taking partial derivatives
with respect to a and b.

2. Do linear regression to find the best fitting parabola.

3. Set up the linear regression to find the best fitting cubic. but
don’t take derivatives.

4. Find the best fitting exponential y = eax+b.

Hint: take ln(y) and do simple linear regression.
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Solutions
1. Model ŷi = axi + b.

total squared error = T = (

=

∑
yi − ŷi )

2∑
(yi − axi − b)2

= (3− a− b)2 + (1− 2a− b)2 + (4− 4a− b)2

Take the partial derivatives and set to 0:

∂T =∂a −2(3− a− b)− 4(1− 2a− b)− 8(4− 4a− b) = 0

∂T = 2(3 a b) 2(1 2a b) 2(4 4a b) = 0∂b − − − − − − − − −

A little arithmetic gives the system of simultaneous linear equations and
solution:

42a +14b = 42 ⇒ a = 1/2, b = 3/2.
14a +6b = 16

1
The least squares best fitting line is y =

3
x +

2
.

2
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Solutions continued

2. Model ŷi = ax2i + bxi + c .

Total squared error:

T =

=

∑
(yi − ŷi )

2∑
(yi − ax2i − bxi − c)2

= (3− a− b − c)2 + (1− 4a− 2b − c)2 + (4− 16a− 4b − c)2

We didn’t really expect people to carry this all the way out by hand. If you
did you would have found that taking the partial derivatives and setting to
0 gives the following system of simultaneous linear equations.

273a +73b +21c = 71
73a +21b +7c = 21 ⇒ a = 1.1667, b = −5.5, c = 7.3333.
21a +7b +3c = 8

The least squares best fitting parabola is y = 1.1667x2 +−5.5x + 7.3333.
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Solutions continued
3. Model ŷi = ax3i + bx2i + cxi + d .

Total squa∑ red error:

T = (yi − ŷi )
2

=
∑

(y − ax3 − bx2 − cx − d)2i i i i

= (3− a− b − c − d)2 + (1− 8a− 4b − 2c − d)2 + (4− 64a− 16b − 4c − d)2

In this case with only 3 points, there are actually many cubics that go
through all the points exactly. We are probably overfitting our data.

4. Model ŷi = eaxi+b ⇔ ln(yi ) = axi + b.

Total squared error:

T =
∑

(ln(yi )− ln(ŷi ))2

=
∑

(ln(y 2
i )− axi − b)

= (ln(3)− a− b)2 + (ln(1)− 2a− b)2 + (ln(4)− 4a− b)2

Now we can find a and b as before. (Using R: a = 0.18, b = 0.41)
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What is linear about linear regression?

Linear in the parameters a, b, . . ..

y = ax + b.

y = ax2 + bx + c .

It is not because the curve being fit has to be a straight line
–although this is the simplest and most common case.

Notice: in the board question you had to solve a system of
simultaneous linear equations.

Fitting a line is called simple linear regression.
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Homoscedastic

BIG ASSUMPTIONS: the Ei are independent with the same
variance σ2.
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Regression line (left) and residuals (right).
Homoscedasticity = uniform spread of errors around regression line.
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Heteroscedastic
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Formulas for simple linear regression

Model:
yi = axi + b + Ei where Ei ∼ N(0, σ2).

Using calculus or algebra:

sxy
â = and b̂ = ȳ

sxx
− â x̄ ,

where
1

x̄ =
1

x
n

∑
i sxx = (

n − 1

∑
xi − x̄)2

1
ȳ =

1
y

n

∑
i sxy = (x )(

− i
1

− x̄ yi
n

− ȳ).

WARNING: This is just for simple linea

∑
r regression. For polynomials

and other functions you need other formulas.
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Board Question: using the formulas plus some theory

Bivariate data: (1, 3), (2, 1), (4, 4)

1.(a) Calculate the sample means for x and y .

1.(b) Use the formulas to find a best-fit line in the xy -plane.
sxy

â = b̂ =
sxx

y − âx

1
sxy =

n − 1

∑
(xi − x)(yi −

1
y) sxx = (

n − 1

∑
xi − x)2.

2. Show the point (x , y) is always on the fitted line.

3. Under the assumption Ei ∼ N(0, σ2) show that the least squares
method is equivalent to finding the MLE for the parameters (a, b).

Hint: f (yi | x 2
i , a, b) ∼ N(axi + b, σ ).
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Solution

answer: 1. (a) x̄ = 7/3, ȳ = 8/3.
(b)

sxx = (1 + 4 + 16)/3− 49/9 = 14/9, sxy = (3 + 2 + 16)/3− 56/9 = 7/9.

So
sxy

â = = 7/14 = 1/2, b̂ = ȳ âx̄ = 9/6 = 3/2.
sxx

−

(The same answer as the previous board question.)

2. The formula b̂ = ȳ − âx̄ is exactly the same as ȳ = âx̄ + b̂. That is,
the point (x̄ , ȳ) is on the line y = âx + b̂

Solution to 3 is on the next slide.
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3. Our model is yi = axi + b + Ei , where the Ei are independent. Since
Ei ∼ N(0, σ2) this becomes

yi ∼ N(axi + b, σ2)

Therefore the likelihood of yi given xi , a and b is

1
f (yi | xi , a, b) = √

2(

e−
yi−axi−b)

2πσ
22σ

Since the data yi are independent the likelihood function is just the
product of the expression above, i.e. we have to sum exponents

2

| −
∑n (y ax b)i=1 i− i−

likelihood = f (y1, . . . , yn x1, . . . , xn, a, b) = e 22σ

Since the exponent is negative, the maximum likelihood will happen when
the exponent is as close to 0 as possible. That is, when the sum∑n

(yi − axi − b)2

i=1

is as small as possible. This is exactly what we were asked to show.
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Measuring the fit

y = (y1, · · · , yn) = data values of the response variable.

ŷ = (ŷ1, · · · , ŷn) = ‘fitted values’ of the response variable.

TSS =
∑

(yi − y)2 = total sum of squares = total variation.

RSS =
∑

(yi − ŷi)
2 = residual sum of squares.

RSS = unexplained by model squared error (due to random
fluctuation)

RSS/TSS = unexplained fraction of the total error.

R2 = 1− RSS/TSS is measure of goodness-of-fit

R2 is the fraction of the variance of y explained by the model.
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Overfitting a polynomial

Increasing the degree of the polynomial increases R2

Increasing the degree of the polynomial increases the complexity
of the model.

The optimal degree is a tradeoff between goodness of fit and
complexity.

If all data points lie on the fitted curve, then y = ŷ and R2 = 1.

R demonstration!
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Outliers and other troubles

Question: Can one point change the regression line significantly?

Use mathlet
http://mathlets.org/mathlets/linear-regression/
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Regression to the mean

Suppose a group of children is given an IQ test at age 4.
One year later the same children are given another IQ test.

Children’s IQ scores at age 4 and age 5 should be positively
correlated.

Those who did poorly on the first test (e.g., bottom 10%) will
tend to show improvement (i.e. regress to the mean) on the
second test.
A completely useless intervention with the poor-performing
children might be misinterpreted as causing an increase in their
scores.

Conversely, a reward for the top-performing children might be
misinterpreted as causing a decrease in their scores.

This example is from Rice Mathematical Statistics and Data Analysis
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A brief discussion of multiple linear regression

Multivariate data: (xi ,1, xi ,2, . . . , xi ,m, yi) (n data points:
i = 1, . . . , n)

Model ŷi = a1xi ,1 + a2xi ,2 + . . . + amxi ,m

xi ,j are the explanatory (or predictor) variables.

yi is the response variable.

The total squared error is

∑n n

(yi − ŷ 2
i) = (yi a1xi ,1 a2xi ,2 . . . a 2

mxi ,m)
i=1

∑
i=1

− − − −
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