Linear Regression 18.05 Spring 2014

Agenda

- Fitting curves to bivariate data
- Measuring the goodness of fit
- The fit vs. complexity tradeoff
- Regression to the mean
- Multiple linear regression

Modeling bivariate data as a function + noise

Ingredients

• Bivariate data $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n).$

• Model:
$$y_i = f(x_i) + E_i$$

where f(x) is some function, E_i random error.

• Total squared error:
$$\sum_{i=1}^{n} E_i^2 = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

Model allows us to predict the value of y for any given value of x.

- x is called the independent or predictor variable.
- *y* is the dependent or response variable.

Examples of f(x)

- lines: y = ax + b + E
- polynomials: $y = ax^2 + bx + c + E$
- other: y = a/x + b + E
- other: $y = a \sin(x) + b + E$

Simple linear regression: finding the best fitting line

- Bivariate data $(x_1, y_1), ..., (x_n, y_n)$.
- Simple linear regression: fit a line to the data

$$y_i = ax_i + b + E_i$$
, where $E_i \sim N(0, \sigma^2)$

and where σ is a fixed value, the same for all data points.

• Total squared error:
$$\sum_{i=1}^{n} E_i^2 = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

- Goal: Find the values of a and b that give the 'best fitting line'.
- Best fit: (least squares) The values of *a* and *b* that minimize the total squared error.

Linear Regression: finding the best fitting polynomial

- Bivariate data: $(x_1, y_1), ..., (x_n, y_n)$.
- Linear regression: fit a parabola to the data

$$y_i = ax_i^2 + bx_i + c + E_i$$
, where $E_i \sim N(0, \sigma^2)$

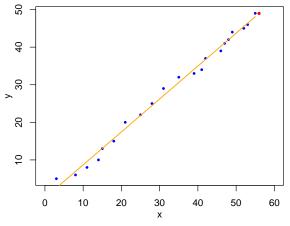
and where σ is a fixed value, the same for all data points.

• Total squared error:
$$\sum_{i=1}^{n} E_i^2 = \sum_{i=1}^{n} (y_i - ax_i^2 - bx_i - c)^2.$$

- Goal: Find the values of a, b, c that give the 'best fitting parabola'.
- Best fit: (least squares) The values of *a*, *b*, *c* that minimize the total squared error.

Can also fit higher order polynomials.

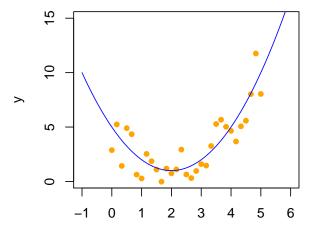
Stamps



Stamp cost (cents) vs. time (years since 1960) (Red dot = 49 cents is predicted cost in 2016.)

(Actual cost of a stamp dropped from 49 to 47 cents on 4/8/16.)

Parabolic fit



Board question: make it fit

Bivariate data:

1. Do (simple) linear regression to find the best fitting line. Hint: minimize the total squared error by taking partial derivatives with respect to *a* and *b*.

2. Do linear regression to find the best fitting parabola.

3. Set up the linear regression to find the best fitting cubic. but don't take derivatives.

4. Find the best fitting exponential $y = e^{ax+b}$. Hint: take ln(y) and do simple linear regression.

Solutions

1. Model
$$\hat{y}_i = ax_i + b$$
.

total squared error =
$$T = \sum (y_i - \hat{y}_i)^2$$

= $\sum (y_i - ax_i - b)^2$
= $(3 - a - b)^2 + (1 - 2a - b)^2 + (4 - 4a - b)^2$

Take the partial derivatives and set to 0:

$$\frac{\partial T}{\partial a} = -2(3-a-b) - 4(1-2a-b) - 8(4-4a-b) = 0$$

$$\frac{\partial T}{\partial b} = -2(3-a-b) - 2(1-2a-b) - 2(4-4a-b) = 0$$

A little arithmetic gives the system of simultaneous linear equations and solution:

$$\begin{array}{rrrr} 42a & +14b & = 42 \\ 14a & +6b & = 16 \end{array} \quad \Rightarrow \quad a = 1/2, \ b = 3/2. \end{array}$$

The least squares best fitting line is $y = \frac{1}{2}x + \frac{3}{2}$.

Solutions continued

2. Model
$$\hat{y}_i = ax_i^2 + bx_i + c$$
.

Total squared error:

$$T = \sum (y_i - \hat{y}_i)^2$$

= $\sum (y_i - ax_i^2 - bx_i - c)^2$
= $(3 - a - b - c)^2 + (1 - 4a - 2b - c)^2 + (4 - 16a - 4b - c)^2$

We didn't really expect people to carry this all the way out by hand. If you did you would have found that taking the partial derivatives and setting to 0 gives the following system of simultaneous linear equations.

The least squares best fitting parabola is $y = 1.1667x^2 + -5.5x + 7.3333$.

Solutions continued

3. Model
$$\hat{y}_i = ax_i^3 + bx_i^2 + cx_i + d$$
.

Total squared error:

$$T = \sum (y_i - \hat{y}_i)^2$$

= $\sum (y_i - ax_i^3 - bx_i^2 - cx_i - d)^2$
= $(3 - a - b - c - d)^2 + (1 - 8a - 4b - 2c - d)^2 + (4 - 64a - 16b - 4b)^2$

In this case with only 3 points, there are actually many cubics that go through all the points exactly. We are probably overfitting our data.

4. Model
$$\hat{y}_i = e^{ax_i+b} \iff \ln(y_i) = ax_i+b$$
.
Total squared error:

$$T = \sum (\ln(y_i) - \ln(\hat{y}_i))^2$$

= $\sum (\ln(y_i) - ax_i - b)^2$
= $(\ln(3) - a - b)^2 + (\ln(1) - 2a - b)^2 + (\ln(4) - 4a - b)^2$
Now we can find *a* and *b* as before. (Using R: *a* = 0.18, *b* = 0.41)

What is linear about linear regression?

Linear in the parameters *a*, *b*,

$$y = ax + b.$$
$$y = ax^2 + bx + c$$

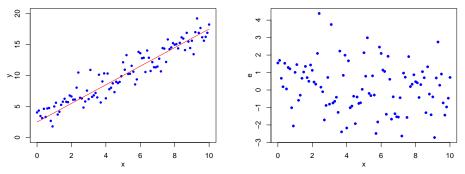
It is **not** because the curve being fit has to be a straight line –although this is the simplest and most common case.

Notice: in the board question you had to solve a system of simultaneous linear equations.

Fitting a line is called simple linear regression.

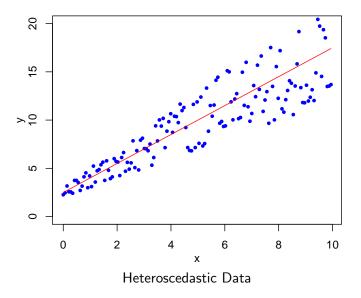
Homoscedastic

BIG ASSUMPTIONS: the E_i are independent with the same variance σ^2 .



Regression line (left) and residuals (right). Homoscedasticity = uniform spread of errors around regression line.

Heteroscedastic



Formulas for simple linear regression

Model:

$$y_i = ax_i + b + E_i$$
 where $E_i \sim N(0, \sigma^2)$.

Using calculus or algebra:

$$\hat{a} = rac{s_{xy}}{s_{xx}}$$
 and $\hat{b} = \bar{y} - \hat{a} \, \bar{x},$

where

$$ar{x} = rac{1}{n} \sum x_i \quad s_{xx} = rac{1}{n-1} \sum (x_i - ar{x})^2 \ ar{y} = rac{1}{n} \sum y_i \quad s_{xy} = rac{1}{n-1} \sum (x_i - ar{x})(y_i - ar{y}).$$

WARNING: This is just for simple linear regression. For polynomials and other functions you need other formulas.

Board Question: using the formulas plus some theory

Bivariate data: (1,3), (2,1), (4,4)

1.(a) Calculate the sample means for x and y.

1.(b) Use the formulas to find a best-fit line in the *xy*-plane. $\hat{a} = \frac{s_{xy}}{s_{xx}}$ $\hat{b} = \overline{y} - \hat{a}\overline{x}$ $s_{xy} = \frac{1}{n-1}\sum_{i=1}^{n-1}(x_i - \overline{x})(y_i - \overline{y})$ $s_{xx} = \frac{1}{n-1}\sum_{i=1}^{n-1}(x_i - \overline{x})^2$.

2. Show the point $(\overline{x}, \overline{y})$ is always on the fitted line.

3. Under the assumption $E_i \sim N(0, \sigma^2)$ show that the least squares method is equivalent to finding the MLE for the parameters (a, b).

Hint:
$$f(y_i | x_i, a, b) \sim N(ax_i + b, \sigma^2)$$
.

Solution

answer: 1. (a)
$$x = 7/3$$
, $y = 8/3$.
(b)
 $s_{xx} = (1+4+16)/3 - 49/9 = 14/9$, $s_{xy} = (3+2+16)/3 - 56/9 = 7/9$.
So
 $\hat{a} - \frac{s_{xy}}{2} = 7/14 - 1/2$, $\hat{b} = \bar{x} - \hat{a}\bar{x} = 9/6 - 3/2$

$$\hat{a} = \frac{s_{xy}}{s_{xx}} = 7/14 = 1/2, \quad \hat{b} = \bar{y} - \hat{a}\bar{x} = 9/6 = 3/2$$

(The same answer as the previous board question.)

2. The formula $\hat{b} = \bar{y} - \hat{a}\bar{x}$ is exactly the same as $\bar{y} = \hat{a}\bar{x} + \hat{b}$. That is, the point (\bar{x}, \bar{y}) is on the line $y = \hat{a}x + \hat{b}$

Solution to 3 is on the next slide.

3. Our model is $y_i = ax_i + b + E_i$, where the E_i are independent. Since $E_i \sim N(0, \sigma^2)$ this becomes

$$y_i \sim \mathsf{N}(ax_i + b, \sigma^2)$$

Therefore the likelihood of y_i given x_i , a and b is

$$f(y_i \mid x_i, a, b) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y_i - ax_i - b)^2}{2\sigma^2}}$$

Since the data y_i are independent the likelihood function is just the product of the expression above, i.e. we have to sum exponents

likelihood =
$$f(y_1, ..., y_n | x_1, ..., x_n, a, b) = e^{-\frac{\sum_{i=1}^n (y_i - ax_i - b)^2}{2\sigma^2}}$$

Since the exponent is negative, the maximum likelihood will happen when the exponent is as close to 0 as possible. That is, when the sum

$$\sum_{i=1}^n (y_i - ax_i - b)^2$$

is as small as possible. This is exactly what we were asked to show.

Measuring the fit

 $y = (y_1, \dots, y_n) = \text{data values of the response variable.}$ $\hat{y} = (\hat{y}_1, \dots, \hat{y}_n) = \text{'fitted values' of the response variable.}$ $\bullet \text{ TSS} = \sum (y_i - \overline{y})^2 = \text{total sum of squares} = \text{total variation.}$

• RSS =
$$\sum (y_i - \hat{y}_i)^2$$
 = residual sum of squares.
RSS = unexplained by model squared error (due to random fluctuation)

- RSS/TSS = unexplained fraction of the total error.
- $R^2 = 1 RSS / TSS$ is measure of goodness-of-fit
- R^2 is the fraction of the variance of y explained by the model.

Overfitting a polynomial

- Increasing the degree of the polynomial increases R^2
- Increasing the degree of the polynomial increases the complexity of the model.
- The optimal degree is a tradeoff between goodness of fit and complexity.
- If all data points lie on the fitted curve, then $y = \hat{y}$ and $R^2 = 1$.

R demonstration!

Question: Can one point change the regression line significantly?

Use mathlet
http://mathlets.org/mathlets/linear-regression/

Regression to the mean

- Suppose a group of children is given an IQ test at age 4. One year later the same children are given another IQ test.
- Children's IQ scores at age 4 and age 5 should be positively correlated.
- Those who did poorly on the first test (e.g., bottom 10%) will tend to show improvement (i.e. regress to the mean) on the second test.
- A completely useless intervention with the poor-performing children might be misinterpreted as causing an increase in their scores.
- Conversely, a reward for the top-performing children might be misinterpreted as causing a decrease in their scores.

This example is from Rice Mathematical Statistics and Data Analysis

A brief discussion of multiple linear regression

Multivariate data: $(x_{i,1}, x_{i,2}, \ldots, x_{i,m}, y_i)$ (*n* data points: $i = 1, \ldots, n$)

Model $\hat{y}_i = a_1 x_{i,1} + a_2 x_{i,2} + \ldots + a_m x_{i,m}$

 $x_{i,j}$ are the explanatory (or predictor) variables.

 y_i is the response variable.

The total squared error is

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - a_1 x_{i,1} - a_2 x_{i,2} - \ldots - a_m x_{i,m})^2$$

18.05 Introduction to Probability and Statistics Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.