Bootstrapping 18.05 Spring 2014

Agenda

- Bootstrap terminology
- Bootstrap principle
- Empirical bootstrap
- Parametric bootstrap

Empirical distribution of data

Data: $x_{1}, x_{2}, \ldots, x_{n}$ (independent)
Example 1. Data: 1, 2, 2, 3, 8, 8, 8.

x^{*}	1	2	3	8
$p^{*}\left(x^{*}\right)$	$1 / 7$	$2 / 7$	$1 / 7$	$3 / 7$

Example 2.

The true and empirical distribution are approximately equal.

Resampling

- Sample (size 6): $12 \begin{array}{lllll} & 1 & 1\end{array}$
- Resample (size m): Randomly choose m samples with replacement from the original sample.
- Resample probabilities = empirical distribution: $P(1)=1 / 2, P(2)=1 / 6$ etc.
- E.g. resample (size 10): $\begin{array}{llllllllll}5 & 1 & 1 & 1 & 12 & 1 & 2 & 1 & 1 & 5\end{array}$
- A bootstrap (re)sample is always the same size as the original sample:
- Bootstrap sample (size 6): $\begin{array}{lllllll}5 & 1 & 1 & 1 & 12 & 1\end{array}$

Bootstrap principle for the mean

- Data $x_{1}, x_{2}, \ldots, x_{n} \sim F$ with true mean μ.
- $F^{*}=$ empirical distribution (resampling distribution).
$\bullet x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}$ resample same size data
Bootstrap Principle: (really holds for any statistic)
(1) $F^{*} \approx F$ computed from the resample.
(2) $\delta^{*}=\bar{x}^{*}-\bar{x} \approx \bar{x}-\mu=$ variation of \bar{x}

Critical values: $\quad \delta_{1-\alpha / 2}^{*} \leq \bar{x}^{*}-\bar{x} \leq \delta_{\alpha / 2}^{*}$
then $\quad \delta_{1-\alpha / 2}^{*} \leq \bar{x}-\mu \leq \delta_{\alpha / 2}^{*} \quad$ so

$$
\bar{x}-\delta_{\alpha / 2}^{*} \leq \mu \leq \bar{x}-\delta_{1-\alpha / 2}^{*}
$$

Empirical bootstrap confidence intervals

Use the data to estimate the variation of estimates based on the data!

- Data: x_{1}, \ldots, x_{n} drawn from a distribution F.
- Estimate a feature θ of F by a statistic $\hat{\theta}$.
- Generate many bootstrap samples $x_{1}^{*}, \ldots, x_{n}^{*}$.
- Compute the statistic θ^{*} for each bootstrap sample.
- Compute the bootstrap difference

$$
\delta^{*}=\theta^{*}-\hat{\theta}
$$

- Use the quantiles of δ^{*} to approximate quantiles of

$$
\delta=\hat{\theta}-\theta
$$

- Set a confidence interval $\left[\hat{\theta}-\delta_{1-\alpha / 2}^{*}, \hat{\theta}-\delta_{\alpha / 2}^{*}\right]$ (By $\delta_{\alpha / 2}$ we mean the $\alpha / 2$ quantile.)

Concept question

Consider finding bootstrap confidence intervals for
I. the mean
II. the median
III. 47th percentile.

Which is easiest to find?
A. I
B. II
C. III
D. I and II
E. II and III F. I and III G. I and II and III

Board question

Data: 381833
Bootstrap samples (each column is one bootstrap trial):

8	8	1	8	3	8	3	1
1	3	3	1	3	8	3	3
3	1	1	8	1	3	3	8
8	1	3	1	3	3	8	8
3	3	1	8	8	3	8	3
3	8	8	3	8	3	1	1

Compute a bootstrap 80% confidence interval for the mean.
Compute a bootstrap 80% confidence interval for the median.

Solution: mean

$$
\begin{aligned}
& \bar{x}=4.33 \\
& \bar{x}^{*}: \quad 4.33,4.00,2.83,4.83,4.33,4.67,4.33,4.00 \\
& \delta^{*}: \quad 0.00,-0.33,-1.50,0.50,0.00,0.33,0.00,-0.33 \\
& \text { Sorted } \\
& \delta^{*}: \quad-1.50,-0.33,-0.33,0.00,0.00,0.00,0.33,0.50
\end{aligned}
$$

So, $\delta_{0.9}^{*}=-1.50, \quad \delta_{0.1}^{*}=0.37$.
(For $\delta_{0.1}^{*}$ we interpolated between the top two values -there are other reasonable choices. In R see the quantile() function.)
80% bootstrap Cl for mean: $\quad[\bar{x}-0.37, \bar{x}+1.50]=[3.97,5.83]$

Solution: median

$$
x_{0.5}=\operatorname{median}(x)=3
$$

$$
x_{0.5}^{*}: \quad 3.0,3.0,2.0,5.5,3.0,3.0,3.0,3.0
$$

$$
\delta^{*}: \quad 0.0,0.0,-1.0,2.5,0.0,0.0,0.0,0.0
$$

Sorted
$\delta^{*}: \quad-1.0,0.0,0.0,0.0,0.0,0.0,0.0,2.5$
So, $\delta_{0.9}^{*}=-1.0, \quad \delta_{0.1}^{*}=0.5$.
(For $\delta_{0.1}^{*}$ we interpolated between the top two values -there are other reasonable choices. In R see the quantile() function.)
80% bootstrap Cl for median: $\quad[\bar{x}-0.5, \bar{x}+1.0]=[2.5,4.0]$

Empirical bootstrapping in R

```
x = c(30,37,36,43,42,43,43,46,41,42) # original sample
n = length(x) # sample size
xbar = mean(x) # sample mean
nboot = 5000 # number of bootstrap samples to use
```

\# Generate nboot empirical samples of size n
\# and organize in a matrix
tmpdata $=$ sample($\mathrm{x}, \mathrm{n} *$ nboot, replace=TRUE)
bootstrapsample = matrix(tmpdata, nrow=n, ncol=nboot)
\# Compute bootstrap means xbar* and differences delta*
xbarstar = colMeans(bootstrapsample)
deltastar = xbarstar - xbar
\# Find the .1 and .9 quantiles and make
\# the bootstrap 80% confidence interval
d = quantile(deltastar, c(.1,.9))
ci $=$ xbar - c(d[2], d[1])

Parametric bootstrapping

Use the estimated parameter to estimate the variation of estimates of the parameter!

- Data: x_{1}, \ldots, x_{n} drawn from a parametric distribution $F(\theta)$.
- Estimate θ by a statistic $\hat{\theta}$.
- Generate many bootstrap samples from $F(\hat{\theta})$.
- Compute the statistic θ^{*} for each bootstrap sample.
- Compute the bootstrap difference

$$
\delta^{*}=\theta^{*}-\hat{\theta} .
$$

- Use the quantiles of δ^{*} to approximate quantiles of

$$
\delta=\hat{\theta}-\theta
$$

- Set a confidence interval $\left[\hat{\theta}-\delta_{1-\alpha / 2}^{*}, \hat{\theta}-\delta_{\alpha / 2}^{*}\right]$

Parametric sampling in R

```
# Data from binomial(15, 0) for an unknown }
x = c(3, 5, 7, 9, 11, 13)
binomSize = 15 # known size of binomial
n = length(x) # sample size
thetahat = mean(x)/binomSize # MLE for }
nboot = 5000 # number of bootstrap samples to use
# nboot parametric samples of size n; organize in a matrix
tmpdata = rbinom(n*nboot, binomSize, thetahat)
bootstrapsample = matrix(tmpdata, nrow=n, ncol=nboot)
# Compute bootstrap means thetahat* and differences delta*
thetahatstar = colMeans(bootstrapsample)/binomSize
deltastar = thetahatstar - thetahat
# Find quantiles and make the bootstrap confidence interval
d = quantile(deltastar, c(.1,.9))
ci = thetahat - c(d[2], d[1])
```


Board question

Data: $655574 \sim \operatorname{binomial}(8, \theta)$

1. Estimate θ.
2. Write out the R code to generate data of 100 parametric bootstrap samples and compute an 80% confidence interval for θ.
(Try this without looking at your notes. We'll show the previous slide at the end)

Preview of linear regression

- Fit lines or polynomials to bivariate data
- Model: $\quad y=f(x)+E$ $f(x)$ function, E random error.
- Example: $y=a x+b+E$
- Example: $y=a x^{2}+b x+c+E$
- Example: $y=\mathrm{e}^{a x+b+E} \quad$ (Compute with $\ln (y)=a x+b+E$.)

MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

