Bootstrapping 18.05 Spring 2014

- Bootstrap terminology
- Bootstrap principle
- Empirical bootstrap
- Parametric bootstrap

Empirical distribution of data

Data: x_1, x_2, \ldots, x_n (independent)

Example 1. Data: 1, 2, 2, 3, 8, 8, 8.

Example 2.

The true and empirical distribution are approximately equal.

Resampling

- Sample (size 6): 1 2 1 5 1 12
- Resample (size *m*): Randomly choose *m* samples with replacement from the original sample.
- Resample probabilities = empirical distribution: P(1) = 1/2, P(2) = 1/6 etc.
- E.g. resample (size 10): 5 1 1 1 12 1 2 1 1 5
- A bootstrap (re)sample is always the same size as the original sample:
- Bootstrap sample (size 6): 5 1 1 1 12 1

Bootstrap principle for the mean

- Data $x_1, x_2, \ldots, x_n \sim F$ with true mean μ .
- *F*^{*} = empirical distribution (resampling distribution).
- • $x_1^*, x_2^*, \ldots, x_n^*$ resample same size data

Bootstrap Principle: (really holds for any statistic) • $F^* \approx F$ computed from the resample.

$$\delta^* = \overline{x}^* - \overline{x} \approx \overline{x} - \mu = \text{variation of } \overline{x}$$

Critical values: $\delta^*_{1-\alpha/2} \leq \overline{x}^* - \overline{x} \leq \delta^*_{\alpha/2}$

 $\text{then} \hspace{0.5cm} \delta^*_{1-\alpha/2} \leq \overline{x} - \mu \leq \delta^*_{\alpha/2} \hspace{0.5cm} \text{so}$

$$\overline{\mathbf{x}} - \delta^*_{\alpha/2} \le \mu \le \overline{\mathbf{x}} - \delta^*_{1-\alpha/2}$$

Empirical bootstrap confidence intervals

Use the data to estimate the variation of estimates based on the data!

- Data: x_1, \ldots, x_n drawn from a distribution F.
- Estimate a feature θ of F by a statistic $\hat{\theta}$.
- Generate many bootstrap samples x_1^*, \ldots, x_n^* .
- Compute the statistic θ^* for each bootstrap sample.
- Compute the bootstrap difference

$$\delta^* = \theta^* - \hat{\theta}$$

 ${\, \bullet \, }$ Use the quantiles of δ^* to approximate quantiles of

$$\delta = \hat{\theta} - \theta$$

• Set a confidence interval $[\hat{\theta} - \delta^*_{1-\alpha/2}, \hat{\theta} - \delta^*_{\alpha/2}]$ (By $\delta_{\alpha/2}$ we mean the $\alpha/2$ quantile.)

Concept question

Consider finding bootstrap confidence intervals for

I. the mean II. the median III. 47th percentile.

Which is easiest to find?

A. I B. II C. III D. I and II

E. II and III F. I and III G. I and II and III

answer: G. The program is essentially the same for all three statistics. All that needs to change is the code for computing the specific statistic.

Board question

Data: 3 8 1 8 3 3

Bootstrap samples (each column is one bootstrap trial):

Compute a bootstrap 80% confidence interval for the mean.

Compute a bootstrap 80% confidence interval for the median.

Solution: mean

 $\bar{x} = 4.33$

 \bar{x}^* : 4.33, 4.00, 2.83, 4.83, 4.33, 4.67, 4.33, 4.00 δ^* : 0.00, -0.33, -1.50, 0.50, 0.00, 0.33, 0.00, -0.33 Sorted δ^* : -1.50, -0.33, -0.33, 0.00, 0.00, 0.00, 0.33, 0.50 So, $\delta^*_{0.0} = -1.50$, $\delta^*_{0.1} = 0.37$.

(For $\delta_{0.1}^*$ we interpolated between the top two values –there are other reasonable choices. In R see the quantile() function.)

80% bootstrap CI for mean: $[\bar{x} - 0.37, \bar{x} + 1.50] = [3.97, 5.83]$

Solution: median

(For $\delta_{0.1}^*$ we interpolated between the top two values –there are other reasonable choices. In R see the quantile() function.)

80% bootstrap CI for median: $[\bar{x} - 0.5, \bar{x} + 1.0] = [2.5, 4.0]$

Empirical bootstrapping in R

x = c(30, 37, 36, 43, 43)	12	,43,43,4	16,4	41,42) #	original	Sa	ample
n = length(x)	#	sample	siz	ze			
xbar = mean(x)	#	sample	mea	an			
nboot = 5000	#	number	of	bootstrap	samples	to	use

```
# Generate nboot empirical samples of size n
# and organize in a matrix
tmpdata = sample(x,n*nboot, replace=TRUE)
bootstrapsample = matrix(tmpdata, nrow=n, ncol=nboot)
```

```
# Compute bootstrap means xbar* and differences delta*
xbarstar = colMeans(bootstrapsample)
deltastar = xbarstar - xbar
```

```
# Find the .1 and .9 quantiles and make
# the bootstrap 80% confidence interval
d = quantile(deltastar, c(.1,.9))
ci = xbar - c(d[2], d[1])
```

Parametric bootstrapping

Use the estimated parameter to estimate the variation of estimates of the parameter!

- Data: x_1, \ldots, x_n drawn from a parametric distribution $F(\theta)$.
- Estimate θ by a statistic $\hat{\theta}$.
- Generate many bootstrap samples from $F(\hat{\theta})$.
- Compute the statistic θ^* for each bootstrap sample.
- Compute the bootstrap difference

$$\delta^* = \theta^* - \hat{\theta}.$$

 ${\, \bullet \, }$ Use the quantiles of δ^* to approximate quantiles of

$$\delta = \hat{\theta} - \theta$$

• Set a confidence interval $[\hat{\theta}-\delta^*_{1-\alpha/2},\,\hat{\theta}-\delta^*_{\alpha/2}]$

Parametric sampling in R

nboot parametric samples of size n; organize in a matrix tmpdata = rbinom(n*nboot, binomSize, thetahat) bootstrapsample = matrix(tmpdata, nrow=n, ncol=nboot)

Compute bootstrap means thetahat* and differences delta*
thetahatstar = colMeans(bootstrapsample)/binomSize
deltastar = thetahatstar - thetahat

Find quantiles and make the bootstrap confidence interval
d = quantile(deltastar, c(.1,.9))
ci = thetahat - c(d[2], d[1])

Board question

Data: 6 5 5 5 7 4 ~ binomial(8, θ)

1. Estimate θ .

2. Write out the R code to generate data of 100 parametric bootstrap samples and compute an 80% confidence interval for θ .

(Try this without looking at your notes. We'll show the previous slide at the end)

Preview of linear regression

- Fit lines or polynomials to bivariate data
- Model: y = f(x) + Ef(x) function, E random error.
- Example: y = ax + b + E
- Example: $y = ax^2 + bx + c + E$
- Example: $y = e^{ax+b+E}$ (Compute with $\ln(y) = ax + b + E$.)

18.05 Introduction to Probability and Statistics Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.