Confidence Intervals for Normal Data 18.05 Spring 2014

Agenda

Today

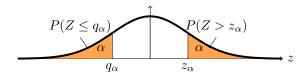
- Review of critical values and quantiles.
- Computing z, t, χ^2 confidence intervals for normal data.
- Conceptual view of confidence intervals.
- Confidence intervals for polling (Bernoulli distributions).

Review of critical values and quantiles

- Quantile: left tail $P(X < q_{\alpha}) = \alpha$
- Critical value: right tail $P(X > c_{\alpha}) = \alpha$

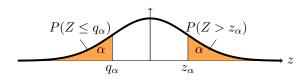
Letters for critical values:

- z_{α} for N(0, 1)
- t_{α} for t(n)
- c_{α} , x_{α} all purpose



 q_{α} and z_{α} for the standard normal distribution.

Concept question



1.
$$z_{.025} =$$
 (a) -1.96 (b) -0.95 (c) 0.95 (d) 1.96 (e) 2.87

2.
$$-z_{.16} =$$
 (a) -1.33 (b) -0.99 (c) 0.99 (d) 1.33 (e) 3.52

Computing confidence intervals from normal data

Suppose the data x_1, \ldots, x_n is drawn from $N(\mu, \sigma^2)$ Confidence level = $1 - \alpha$

• z confidence interval for the mean (σ known)

$$\left[\overline{x} - \frac{z_{\alpha/2} \cdot \sigma}{\sqrt{n}}, \ \overline{x} + \frac{z_{\alpha/2} \cdot \sigma}{\sqrt{n}}\right]$$

• t confidence interval for the mean (σ unknown)

$$\left[\overline{x} - \frac{t_{\alpha/2} \cdot s}{\sqrt{n}}, \ \overline{x} + \frac{t_{\alpha/2} \cdot s}{\sqrt{n}}\right]$$

• χ^2 confidence interval for σ^2

$$\left[\frac{n-1}{c_{\alpha/2}}s^2, \frac{n-1}{c_{1-\alpha/2}}s^2\right]$$

• t and χ^2 have n-1 degrees of freedom.

z rule of thumb

Suppose $x_1, \ldots, x_n \sim N(\mu, \sigma^2)$ with σ known.

The rule-of-thumb 95% confidence interval for μ is:

$$\left[\bar{x} - 2\frac{\sigma}{\sqrt{n}}, \ \bar{x} + 2\frac{\sigma}{\sqrt{n}}\right]$$

A more precise 95% confidence interval for μ is:

$$\left[\bar{x} - 1.96 \frac{\sigma}{\sqrt{n}}, \ \bar{x} + 1.96 \frac{\sigma}{\sqrt{n}}\right]$$

Board question: computing confidence intervals

The data 1, 2, 3, 4 is drawn from $N(\mu, \sigma^2)$ with μ unknown.

- Find a 90% z confidence interval for μ , given that $\sigma=2$. For the remaining parts, suppose σ is unknown.
- ② Find a 90% t confidence interval for μ .
- **3** Find a 90% χ^2 confidence interval for σ^2 .
- Find a 90% χ^2 confidence interval for σ .
- Given a normal sample with n=100, $\overline{x}=12$, and s=5, find the rule-of-thumb 95% confidence interval for μ .

Conceptual view of confidence intervals

- Computed from data ⇒ interval statistic
- 'Estimates' a parameter of interest ⇒ interval estimate
- Width = measure of precision
- Confidence level = measure of performance
- Confidence intervals are a frequentist method.
 - ▶ No need for a prior, only uses likelihood.
 - ► Frequentists never assign probabilities to unknown parameters:
 - A 95% confidence interval of [1.2, 3.4] for μ does not mean that $P(1.2 \le \mu \le 3.4) = 0.95$.
- We will compare with Bayesian probability intervals later.

Applet:

http://mathlets.org/mathlets/confidence-intervals/

Table discussion

The quantities n, c, μ , σ all play a roll in the confidence interval for the mean.

How does the width of a confidence interval for the mean change if:

- 1. we increase *n* and leave the others unchanged?
- 2. we increase c and leave the others unchanged?
- 3. we increase μ and leave the others unchanged?
- 4. we increase σ and leave the others unchanged?

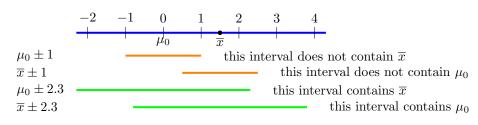
- (A) it gets wider
- (B) it gets narrower
- (C) it stays the same.

Intervals and pivoting

 \overline{x} : sample mean (statistic)

 μ_0 : hypothesized mean (not known)

Pivoting: \overline{x} is in the interval $\mu_0 \pm 2.3 \iff \mu_0$ is in the interval $\overline{x} \pm 2.3$.



Algebra of pivoting:

$$\mu_0 - 2.3 < \overline{x} < \mu_0 + 2.3 \iff \overline{x} + 2.3 > \mu_0 > \overline{x} - 2.3.$$

Board question: confidence intervals, non-rejection regions

Suppose $x_1, \ldots, x_n \sim N(\mu, \sigma^2)$ with σ known.

Consider two intervals:

- 1. The z confidence interval around \overline{x} at confidence level 1α .
- 2. The z non-rejection region for H_0 : $\mu = \mu_0$ at significance level α .

Compute and sketch these intervals to show that:

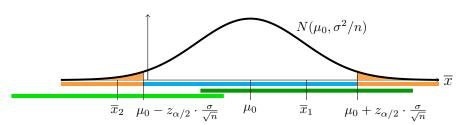
 μ_0 is in the first interval $\Leftrightarrow \overline{x}$ is in the second interval.

Solution

Confidence interval: $\overline{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$

Non-rejection region: $\mu_0 \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$

Since the intervals are the same width they either both contain the other's center or neither one does.



Polling: a binomial proportion confidence interval

Data x_1, \ldots, x_n from a Bernoulli(θ) distribution with θ unknown.

A conservative normal $(1-\alpha)$ confidence interval for θ is given by

$$\left[\bar{x} - \frac{z_{\alpha/2}}{2\sqrt{n}}, \ \bar{x} + \frac{z_{\alpha/2}}{2\sqrt{n}}\right].$$

Proof uses the CLT and the observation $\sigma = \sqrt{\theta(1-\theta)} \le 1/2$.

Political polls often give a margin-of-error of $\pm 1/\sqrt{n}$. This **rule-of-thumb** corresponds to a 95% confidence interval:

$$\left[\bar{x}-\frac{1}{\sqrt{n}},\ \bar{x}+\frac{1}{\sqrt{n}}\right].$$

(The proof is in the class 22 notes.)

Conversely, a margin of error of ± 0.05 means 400 people were polled.

http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval

 $^{^\}dagger$ There are many types of binomial proportion confidence intervals.

Board question

For a poll to find the proportion θ of people supporting X we know that a $(1-\alpha)$ confidence interval for θ is given by

$$\left[\bar{x} - \frac{z_{\alpha/2}}{2\sqrt{n}}, \ \bar{x} + \frac{z_{\alpha/2}}{2\sqrt{n}}\right].$$

- 1. How many people would you have to poll to have a margin of error of .01 with 95% confidence? (You can do this in your head.)
- 2. How many people would you have to poll to have a margin of error of .01 with 80% confidence. (You'll want R or other calculator here.)
- **3.** If n=900, compute the 95% and 80% confidence intervals for θ .

MIT OpenCourseWare https://ocw.mit.edu

18.05 Introduction to Probability and Statistics Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.