Confidence Intervals for Normal Data 18.05 Spring 2014

Agenda

Today

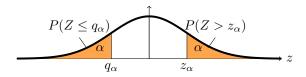
- Review of critical values and quantiles.
- Computing z, t, χ^2 confidence intervals for normal data.
- Conceptual view of confidence intervals.
- Confidence intervals for polling (Bernoulli distributions).

Review of critical values and quantiles

- Quantile: left tail $P(X < q_{\alpha}) = \alpha$
- Critical value: right tail $P(X > c_{\alpha}) = \alpha$

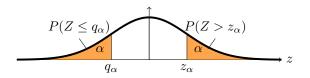
Letters for critical values:

- z_{α} for N(0, 1)
- t_{α} for t(n)
- c_{α}, x_{α} all purpose



 q_{α} and z_{α} for the standard normal distribution.

Concept question



1. $z_{.025} =$ (a) -1.96 (b) -0.95 (c) 0.95 (d) 1.96 (e) 2.87 **2.** $-z_{.16} =$ (a) -1.33 (b) -0.99 (c) 0.99 (d) 1.33 (e) 3.52

Solution on next slide.

Solution

1. <u>answer:</u> $z_{.025} = 1.96$. By definition $P(Z > z_{.025}) = 0.025$. This is the same as $P(Z \le z_{.025}) = 0.975$. Either from memory, a table or using the R function qnorm(.975) we get the result.

2.<u>answer:</u> $-z_{.16} = -0.99$. We recall that $P(|Z| < 1) \approx .68$. Since half the leftover probability is in the right tail we have $P(Z > 1) \approx 0.16$. Thus $z_{.16} \approx 1$, so $-z_{.16} \approx -1$.

Computing confidence intervals from normal data Suppose the data x_1, \ldots, x_n is drawn from N(μ, σ^2) Confidence level = $1 - \alpha$

• z confidence interval for the mean (σ known)

$$\left[\overline{x} \ - \ \frac{z_{\alpha/2} \cdot \sigma}{\sqrt{n}}, \ \overline{x} \ + \ \frac{z_{\alpha/2} \cdot \sigma}{\sqrt{n}}\right]$$

• t confidence interval for the mean (σ unknown)

$$\left[\overline{x} \ - \ rac{t_{lpha/2} \cdot s}{\sqrt{n}}, \ \ \overline{x} \ + \ rac{t_{lpha/2} \cdot s}{\sqrt{n}}
ight]$$

• χ^2 confidence interval for σ^2

$$\left[rac{n-1}{c_{lpha/2}}s^2, rac{n-1}{c_{1-lpha/2}}s^2
ight]$$

• t and χ^2 have n-1 degrees of freedom.

z rule of thumb

Suppose $x_1, \ldots, x_n \sim N(\mu, \sigma^2)$ with σ known.

The rule-of-thumb 95% confidence interval for μ is:

$$\left[\bar{x} - 2\frac{\sigma}{\sqrt{n}}, \ \bar{x} + 2\frac{\sigma}{\sqrt{n}}\right]$$

A more precise 95% confidence interval for μ is:

$$\left[ar{x}-1.96rac{\sigma}{\sqrt{n}}, \ \ ar{x}+1.96rac{\sigma}{\sqrt{n}}
ight]$$

Board question: computing confidence intervals

The data 1, 2, 3, 4 is drawn from N(μ, σ^2) with μ unknown.

- Find a 90% z confidence interval for μ, given that σ = 2.
 For the remaining parts, suppose σ is unknown.
- **2** Find a 90% *t* confidence interval for μ .
- Find a 90% χ^2 confidence interval for σ^2 .
- Find a 90% χ^2 confidence interval for σ .
- Given a normal sample with n = 100, $\overline{x} = 12$, and s = 5, find the rule-of-thumb 95% confidence interval for μ .

Solution

 $\overline{x} = 2.5$, $s^2 = 1.667$, s = 1.29 $\sigma/\sqrt{n} = 1$, $s/\sqrt{n} = 0.645$. 1. $z_{.05} = 1.644$: *z* confidence interval is

$$2.5 \pm 1.644 \cdot 1 = [0.856, 4.144]$$

2. $t_{.05} = 2.353$ (3 degrees of freedom): t confidence interval is

$$2.5 \pm 2.353 \cdot 0.645 = [0.982, 4.018]$$

3. $c_{0.05} = 7.1814$, $c_{0.95} = 0.352$ (3 degrees of freedom): χ^2 confidence interval is

$$\left[\frac{3 \cdot 1.667}{7.1814}, \ \frac{3 \cdot 1.667}{0.352}\right] = [0.696, \ 14.207].$$

4. Take the square root of the interval in 3. [0.834, 3.769]. 5. The rule of thumb is written for z, but with n = 100 the t(99) and standard normal distributions are very close, so we can assume that $t_{.025} \approx 2$. Thus the 95% confidence interval is $12 \pm 2 \cdot 5/10 = [11, 13]$.

Conceptual view of confidence intervals

- Computed from data \Rightarrow interval statistic
- 'Estimates' a parameter of interest \Rightarrow interval estimate
- Width = measure of precision
- Confidence level = measure of performance
- Confidence intervals are a frequentist method.
 - ► No need for a prior, only uses likelihood.
 - Frequentists never assign probabilities to unknown parameters:
 - ▶ A 95% confidence interval of [1.2, 3.4] for μ does not mean that $P(1.2 \le \mu \le 3.4) = 0.95$.
- We will compare with Bayesian probability intervals later.

Applet:

http://mathlets.org/mathlets/confidence-intervals/

Table discussion

The quantities *n*, *c*, μ , σ all play a roll in the confidence interval for the mean.

How does the width of a confidence interval for the mean change if:

1. we increase *n* and leave the others unchanged?

2. we increase c and leave the others unchanged?

3. we increase μ and leave the others unchanged?

4. we increase σ and leave the others unchanged?

(A) it gets wider

(B) it gets narrower

(C) it stays the same.

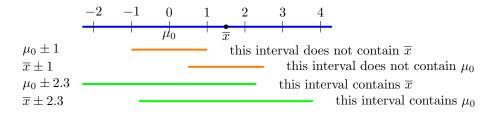
- 1. Narrower. More data decreases the variance of \bar{x}
- 2. Wider. Greater confidence requires a bigger interval.
- 3. No change. Changing μ will tend to shift the location of the intervals.
- 4. Wider. Increasing σ will increase the uncertainty about μ .

Intervals and pivoting

 \overline{x} : sample mean (statistic)

 μ_0 : hypothesized mean (not known)

Pivoting: \overline{x} is in the interval $\mu_0 \pm 2.3 \Leftrightarrow \mu_0$ is in the interval $\overline{x} \pm 2.3$.



Algebra of pivoting:

 $\mu_0 - 2.3 < \overline{x} < \mu_0 + 2.3 \iff \overline{x} + 2.3 > \mu_0 > \overline{x} - 2.3.$

Board question: confidence intervals, non-rejection regions

Suppose $x_1, \ldots, x_n \sim N(\mu, \sigma^2)$ with σ known.

Consider two intervals:

- 1. The z confidence interval around \overline{x} at confidence level 1α .
- 2. The z non-rejection region for $H_0: \mu = \mu_0$ at significance level α .

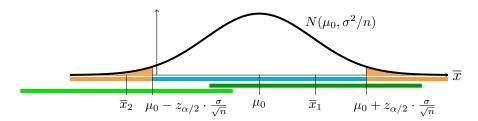
Compute and sketch these intervals to show that:

 μ_0 is in the first interval $\Leftrightarrow \overline{x}$ is in the second interval.

Solution

Confidence interval: $\overline{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$ Non-rejection region: $\mu_0 \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$

Since the intervals are the same width they either both contain the other's center or neither one does.



Polling: a binomial proportion confidence interval

Data x_1, \ldots, x_n from a Bernoulli(θ) distribution with θ unknown.

A conservative normal[†] $(1 - \alpha)$ confidence interval for θ is given by

$$\left[\bar{x}-\frac{z_{\alpha/2}}{2\sqrt{n}},\ \bar{x}+\frac{z_{\alpha/2}}{2\sqrt{n}}\right].$$

Proof uses the CLT and the observation $\sigma = \sqrt{\theta(1-\theta)} \le 1/2$.

Political polls often give a margin-of-error of $\pm 1/\sqrt{n}$. This **rule-of-thumb** corresponds to a 95% confidence interval:

$$\left[\,\bar{x} - \frac{1}{\sqrt{n}}, \ \bar{x} + \frac{1}{\sqrt{n}}\,\right]$$

(The proof is in the class 22 notes.)

Conversely, a margin of error of ± 0.05 means 400 people were polled. [†]There are many types of binomial proportion confidence intervals. http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval

Board question

For a poll to find the proportion θ of people supporting X we know that a $(1 - \alpha)$ confidence interval for θ is given by

$$\left[\bar{x}-\frac{z_{\alpha/2}}{2\sqrt{n}},\ \bar{x}+\frac{z_{\alpha/2}}{2\sqrt{n}}\right].$$

1. How many people would you have to poll to have a margin of error of .01 with 95% confidence? (You can do this in your head.)

2. How many people would you have to poll to have a margin of error of .01 with 80% confidence. (You'll want R or other calculator here.)

3. If n = 900, compute the 95% and 80% confidence intervals for θ . **answer:** See next slide.

<u>answer:</u> 1. Need $1/\sqrt{n} = .01$ So n = 10000. 2. $\alpha = .2$, so $z_{\alpha/2} = \text{qnorm}(.9) = 1.2816$. So we need $\frac{z_{\alpha/2}}{2\sqrt{n}} = .01$. This gives n = 4106. 3. 95% interval: $\overline{x} \pm \frac{1}{\sqrt{n}} = \overline{x} \pm \frac{1}{30} = \overline{x} \pm .0333$

80% interval:
$$\overline{x} \pm z_{.1} \frac{1}{2\sqrt{n}} = \overline{x} \pm 1.2816 \cdot \frac{1}{60} = \overline{x} \pm .021.$$

18.05 Introduction to Probability and Statistics Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.