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Conjugate priors 

A prior is conjugate to a likelihood if the posterior is the same type of
 
distribution as the prior.
 
Updating becomes algebra instead of calculus.
 

hypothesis data prior likelihood posterior

Bernoulli/Beta θ ∈ [0, 1] x beta(a, b) Bernoulli(θ) beta(a+ 1, b) or beta(a, b+ 1)

θ x = 1 c1θ
a−1(1− θ)b−1 θ c3θ

a(1− θ)b−1

θ x = 0 c1θ
a−1(1− θ)b−1 1− θ c3θ

a−1(1− θ)b

Binomial/Beta θ ∈ [0, 1] x beta(a, b) binomial(N, θ) beta(a+ x, b+N − x)

(fixed N) θ x c1θ
a−1(1− θ)b−1 c2θ

x(1− θ)N−x c3θ
a+x−1(1− θ)b+N−x−1

Geometric/Beta θ ∈ [0, 1] x beta(a, b) geometric(θ) beta(a+ x, b+ 1)

θ x c1θ
a−1(1− θ)b−1 θx(1− θ) c3θ

a+x−1(1− θ)b

Normal/Normal θ ∈ (−∞,∞) x N(µprior, σ
2
prior) N(θ, σ2) N(µpost, σ

2
post)

(fixed σ2) θ x c1 exp
(

−(θ−µprior)
2

2σ2
prior

)
c2 exp

(
−(x−θ)2

2σ2

)
c3 exp

(
(θ−µpost)

2

2σ2
post

)

There are many other likelihood/conjugate prior pairs.
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Concept question: conjugate priors 
Which are conjugate priors? 

hypothesis data prior likelihood

a) Exponential/Normal θ ∈ [0,∞) x N(µprior, σ
2
prior) exp(θ)

θ x c1 exp
(
− (θ−µprior)

2

2σ2
prior

)
θe−θx

b) Exponential/Gamma θ ∈ [0,∞) x Gamma(a, b) exp(θ)

θ x c1θ
a−1e−bθ θe−θx

c) Binomial/Normal θ ∈ [0, 1] x N(µprior, σ
2
prior) binomial(N, θ)

(fixed N) θ x c1 exp
(
− (θ−µprior)

2

2σ2
prior

)
c2 θ

x(1− θ)N−x

1. none 2. a 3. b 4. c 
5. a,b 6. a,c 7. b,c 8. a,b,c 
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Concept question: strong priors 
Say we have a bent coin with unknown probability of heads θ.
 

We are convinced that θ ≤ 0.7.
 
Our prior is uniform on [0, 0.7] and 0 from 0.7 to 1.
 

We flip the coin 65 times and get 60 heads.
 

Which of the graphs below is the posterior pdf for θ?
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Two parameter tables: Malaria
 

In the 1950’s scientists injected 30 African “volunteers” with malaria. 

S = carrier of sickle-cell gene 

N = non-carrier of sickle-cell gene 

D+ = developed malaria 

D− = did not develop malaria 

D+ D− 
S 2 13 15 
N 14 1 15 

16 14 30 
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Model
 

θS = probability an injected S develops malaria. 

θN = probabilitiy an injected N develops malaria. 

Assume conditional independence between all the experimental 
subjects. 

Likelihood is a function of both θS and θN : 

P(data|θS , θN ) = c θ2 (1 − θS )
13θ14(1 − θN ).S N 

Hypotheses: pairs (θS , θN ). 

Finite number of hypotheses. θS and θN are each one of 
0, .2, .4, .6, .8, 1. 
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Color-coded two-dimensional tables
 

Hypotheses
 

θN\θS 0 0.2 0.4 0.6 0.8 1

1 (0,1) (.2,1) (.4,1) (.6,1) (.8,1) (1,1)

0.8 (0,.8) (.2,.8) (.4,.8) (.6,.8) (.8,.8) (1,.8)

0.6 (0,.6) (.2,.6) (.4,.6) (.6,.6) (.8,.6) (1,.6)

0.4 (0,.4) (.2,.4) (.4,.4) (.6,.4) (.8,.4) (1,.4)

0.2 (0,.2) (.2,.2) (.4,.2) (.6,.2) (.8,.2) (1,.2)

0 (0,0) (.2,0) (.4,0) (.6,0) (.8,0) (1,0)

Table of hypotheses for (θS , θN ) 

Corresponding level of protection due to S : 

red = strong, pink = some, orange = none, 

white = negative. 
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Color-coded two-dimensional tables
 

Likelihoods (scaled to make the table readable)
 

θN\θS 0 0.2 0.4 0.6 0.8 1

1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.8 0.00000 1.93428 0.18381 0.00213 0.00000 0.00000

0.6 0.00000 0.06893 0.00655 0.00008 0.00000 0.00000

0.4 0.00000 0.00035 0.00003 0.00000 0.00000 0.00000

0.2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Likelihoods scaled by 100000/c
 

p(data|θS , θN ) = c θ2 (1 − θS )
13θ14(1 − θN ).
S N 
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Color-coded two-dimensional tables
 

Flat prior
 

θN\θS 0 0.2 0.4 0.6 0.8 1 p(θN )

1 1/36 1/36 1/36 1/36 1/36 1/36 1/6

0.8 1/36 1/36 1/36 1/36 1/36 1/36 1/6

0.6 1/36 1/36 1/36 1/36 1/36 1/36 1/6

0.4 1/36 1/36 1/36 1/36 1/36 1/36 1/6

0.2 1/36 1/36 1/36 1/36 1/36 1/36 1/6

0 1/36 1/36 1/36 1/36 1/36 1/36 1/6

p(θS) 1/6 1/6 1/6 1/6 1/6 1/6 1

Flat prior p(θS , θN ): each hypothesis (square) has equal probability 
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Color-coded two-dimensional tables
 

Posterior to the flat prior
 

θN\θS 0 0.2 0.4 0.6 0.8 1 p(θN |data)
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.8 0.00000 0.88075 0.08370 0.00097 0.00000 0.00000 0.96542

0.6 0.00000 0.03139 0.00298 0.00003 0.00000 0.00000 0.03440

0.4 0.00000 0.00016 0.00002 0.00000 0.00000 0.00000 0.00018

0.2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

p(θS |data) 0.00000 0.91230 0.08670 0.00100 0.00000 0.00000 1.00000

Normalized posterior to the flat prior: p(θS , θN |data) 

Strong protection: P(θN − θS > .5 | data) = sum of red = .88075 

Some protection: P(θN > θS | data) = sum pink and red = .99995 
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Continuous two-parameter distributions
 

Sometimes continuous parameters are more natural. 

Malaria example (from class notes): 
discrete prior table from the class notes. 
Similarly colored version for the continuous parameters (θS , θN ) 

over range [0, 1] × [0, 1]. 

θN\θS 0 0.2 0.4 0.6 0.8 1

1 (0,1) (.2,1) (.4,1) (.6,1) (.8,1) (1,1)

0.8 (0,.8) (.2,.8) (.4,.8) (.6,.8) (.8,.8) (1,.8)

0.6 (0,.6) (.2,.6) (.4,.6) (.6,.6) (.8,.6) (1,.6)

0.4 (0,.4) (.2,.4) (.4,.4) (.6,.4) (.8,.4) (1,.4)

0.2 (0,.2) (.2,.2) (.4,.2) (.6,.2) (.8,.2) (1,.2)

0 (0,0) (.2,0) (.4,0) (.6,0) (.8,0) (1,0) θS

θN θN < θS

θS < θN

θN − θS > 0.6

1

1

0.6

The probabilities are given by double integrals over regions.
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Treating severe respiratory failure*
 

*Adapted from Statistics a Bayesian Perspective by Donald Berry 

Two treatments for newborns with severe respiratory failure. 

1. CVT: conventional therapy (hyperventilation and drugs) 

2. ECMO: extracorporeal membrane oxygenation (invasive procedure) 

In 1983 in Michigan: 

19/19 ECMO babies survived and 0/3 CVT babies survived. 

Later Harvard ran a randomized study: 

28/29 ECMO babies survived and 6/10 CVT babies survived. 
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Board question: updating two parameter priors 

Michigan: 19/19 ECMO babies and 0/3 CVT babies survived. 

Harvard: 28/29 ECMO babies and 6/10 CVT babies survived. 

θE = probability that an ECMO baby survives 
θC = probability that a CVT baby survives 

Consider the values 0.125, 0.375, 0.625, 0.875 for θE and θS 

1. Make the 4 × 4 prior table for a flat prior. 
2. Based on the Michigan results, create a reasonable informed prior 
table for analyzing the Harvard results (unnormalized is fine). 
3. Make the likelihood table for the Harvard results. 
4. Find the posterior table for the informed prior. 
5. Using the informed posterior, compute the probability that ECMO 
is better than CVT. 
6. Also compute the posterior probability that θE − θC ≥ 0.6. 
(The posted solutions will also show 4-6 for the flat prior.) 
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Probability intervals
 

Example. If P(a ≤ θ ≤ b) = 0.7 then [a, b] is a 0.7 probability 
interval for θ. We also call it a 70% probability interval. 

Example. Between the 0.05 and 0.55 quantiles is a 0.5 
probability interval. Another 50% probability interval goes from 
the 0.25 to the 0.75 quantiles. 

Symmetric probability intevals. A symmetric 90% probability 
interval goes from the 0.05 to the 0.95 quantile. 

Q-notation. Writing qp for the p quantile we have 0.5
 
probability intervals [q0.25, q0.75] and [q0.05, q0.55].
 

Uses. To summarize a distribution; To help build a subjective 
prior. 
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Probability intervals in Bayesian updating
 

We have p-probability intervals for the prior f (θ).
 

We have p-probability intervals for the posterior f (θ|x).
 

The latter tends to be smaller than the former. Thanks data!
 

Probability intervals are good, concise statements about our
 
current belief/understanding of the parameter of interest.
 

We can use them to help choose a good prior.
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Probability intervals for normal distributions
 

Red = 0.68, magenta = 0.9, green = 0.5
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Probability intervals for beta distributions
 

Red = 0.68, magenta = 0.9, green = 0.5 
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Concept question
 

To convert an 80% probability interval to a 90% interval should you 
shrink it or stretch it? 

1. Shrink 2. Stretch. 
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Subjective probability 1 (50% probability interval)
 

10 50000

66000
Airline deaths in 100 years
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Subjective probability 2 (50% probability interval)
 

100 500000000

63000000
Number of girls born in world each year
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Subjective probability 3 (50% probability interval)
 

0 100

13
Percentage of African-Americans in US
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Subjective probability 3 censored (50% probability interval)
 

Censored by changing numbers less than 1 to percentages and 
ignoring numbers bigger that 100. 

5 100

13
Percentage of African-Americans in US (censored data)
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Subjective probability 4 (50% probability interval)
 

100 1000000000

75000000

native speakers

able to speak French

265000000
Number of French speakers world-wide
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Subjective probability 5 (50% probability interval)
 

100 1500000

1200000
Number of abortions in the U.S. each year
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