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Conjugate priors

A prior is conjugate to a likelihood if the posterior is the same type of
distribution as the prior.
Updating becomes algebra instead of calculus.

hypothesis data prior likelihood posterior

Bernoulli/Beta θ ∈ [0, 1] x beta(a, b) Bernoulli(θ) beta(a+ 1, b) or beta(a, b+ 1)

θ x = 1 c1θ
a−1(1− θ)b−1 θ c3θ

a(1− θ)b−1

θ x = 0 c θa−1 b
1 (1− θ) −1 1− θ c3θ

a−1(1− θ)b

Binomial/Beta θ ∈ [0, 1] x beta(a, b) binomial(N, θ) beta(a+ x, b+N − x)

(fixed N) θ x c1θ
a−1(1− θ)b−1 c θx(1− θ)N−x c θa+x−1(1− θ)b+N2 3

−x−1

Geometric/Beta θ ∈ [0, 1] x beta(a, b) geometric(θ) beta(a+ x, b+ 1)

θ x c θa−1(1− θ)b−1 θx a
1 (1− θ) c3θ

+x−1(1− θ)b

Normal/Normal θ ∈ (−∞,∞) x N(µprior, σ
2
prior) N(θ, σ2) N(µpost, σ

2
post)

2

(fixed σ2 θ
) θ x exp

(
−(

c
−µprior)

1
(c

2σ2
prior

)
2 exp

(
− x−θ)2 (

c2σ2

)
3 exp

(
θ−µpost)

2

2σ2
post

)

There are many other likelihood/conjugate prior pairs.
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Concept question: conjugate priors

Which are conjugate priors?

hypothesis data prior likelihood

a) Exponential/Normal θ ∈ [0,∞) x N(µ , σ2prior prior) exp(θ)

θ x c1 exp
(
− (θ−µprior)

2

θ
2σ2 e−θx

prior

b) Exponential/Gamma θ ∈ [0,∞) x Gamma(a, b)

)

exp(θ)

θ x c1θ
a−1e−bθ θe−θx

c) Binomial/Normal θ ∈ [0, 1] x N(µprior, σ
2
prior) binomial(N, θ)

2

(fixed N) θ x c exp
(
− (θ−µprior)

1 c
2σ2

prior

)
2 θ

x(1− θ)N−x

1. none 2. a 3. b 4. c
5. a,b 6. a,c 7. b,c 8. a,b,c
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Answer: 3. b
We have a conjugate prior if the posterior as a function of θ has the same
form as the prior.

Exponential/Normal posterior:

(θ− 2µ )
− prior

f (θ|x) = c1θe
22σ
prior

−θ x

The factor of θ before the exponential means this is not the pdf of a
normal distribution. Therefore it is not a conjugate prior.

Exponential/Gamma posterior: Note, we have never learned about Gamma
distributions, but it doesn’t matter. We only have to check if the posterior
has the same form:

f (θ|x) = c1θ
ae−(b+x)θ

The posterior has the form Gamma(a+ 1, b + x). This is a conjugate prior.

Binomial/Normal: It is clear that the posterior does not have the form of a
normal distribution.
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Concept question: strong priors
Say we have a bent coin with unknown probability of heads θ.

We are convinced that θ ≤ 0.7.
Our prior is uniform on [0, 0.7] and 0 from 0.7 to 1.

We flip the coin 65 times and get 60 heads.

Which of the graphs below is the posterior pdf for θ?
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0
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Solution to concept question

answer: Graph C, the blue graph spiking near 0.7.

Sixty heads in 65 tosses indicates the true value of θ is close to 1. Our
prior was 0 for θ > 0.7. So no amount of data will make the posterior
non-zero in that range. That is, we have forclosed on the possibility of
deciding that θ is close to 1. The Bayesian updating puts θ near the top of
the allowed range.
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Two parameter tables: Malaria

In the 1950’s scientists injected 30 African “volunteers” with malaria.

S = carrier of sickle-cell gene

N = non-carrier of sickle-cell gene

D+ = developed malaria

D− = did not develop malaria

D+ D−
S 2 13 15
N 14 1 15

16 14 30
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Model

θS = probability an injected S develops malaria.

θN = probabilitiy an injected N develops malaria.

Assume conditional independence between all the experimental
subjects.

Likelihood is a function of both θS and θN :

P(data|θ , θ ) = c θ2(1 13 14
S N S − θS) θN (1− θN).

Hypotheses: pairs (θS , θN).

Finite number of hypotheses. θS and θN are each one of
0, .2, .4, .6, .8, 1.
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Color-coded two-dimensional tables

Hypotheses

θN\θS 0 0.2 0.4 0.6 0.8 1

1 (0,1) (.2,1) (.4,1) (.6,1) (.8,1) (1,1)

0.8 (0,.8) (.2,.8) (.4,.8) (.6,.8) (.8,.8) (1,.8)

0.6 (0,.6) (.2,.6) (.4,.6) (.6,.6) (.8,.6) (1,.6)

0.4 (0,.4) (.2,.4) (.4,.4) (.6,.4) (.8,.4) (1,.4)

0.2 (0,.2) (.2,.2) (.4,.2) (.6,.2) (.8,.2) (1,.2)

0 (0,0) (.2,0) (.4,0) (.6,0) (.8,0) (1,0)

Table of hypotheses for (θS , θN)

Corresponding level of protection due to S :

red = strong, pink = some, orange = none,

white = negative.
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Color-coded two-dimensional tables

Likelihoods (scaled to make the table readable)

θN\θS 0 0.2 0.4 0.6 0.8 1

1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.8 0.00000 1.93428 0.18381 0.00213 0.00000 0.00000

0.6 0.00000 0.06893 0.00655 0.00008 0.00000 0.00000

0.4 0.00000 0.00035 0.00003 0.00000 0.00000 0.00000

0.2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Likelihoods scaled by 100000/c

p(data|θS , θN) = c θ2S(1− θS)13θ14N (1− θN).
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Color-coded two-dimensional tables

Flat prior

θN\θS 0 0.2 0.4 0.6 0.8 1 p(θN )

1 1/36 1/36 1/36 1/36 1/36 1/36 1/6

0.8 1/36 1/36 1/36 1/36 1/36 1/36 1/6

0.6 1/36 1/36 1/36 1/36 1/36 1/36 1/6

0.4 1/36 1/36 1/36 1/36 1/36 1/36 1/6

0.2 1/36 1/36 1/36 1/36 1/36 1/36 1/6

0 1/36 1/36 1/36 1/36 1/36 1/36 1/6

p(θS) 1/6 1/6 1/6 1/6 1/6 1/6 1

Flat prior p(θS , θN): each hypothesis (square) has equal probability
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Color-coded two-dimensional tables

Posterior to the flat prior

θN\θS 0 0.2 0.4 0.6 0.8 1 p(θN |data)
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.8 0.00000 0.88075 0.08370 0.00097 0.00000 0.00000 0.96542

0.6 0.00000 0.03139 0.00298 0.00003 0.00000 0.00000 0.03440

0.4 0.00000 0.00016 0.00002 0.00000 0.00000 0.00000 0.00018

0.2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

p(θS |data) 0.00000 0.91230 0.08670 0.00100 0.00000 0.00000 1.00000

Normalized posterior to the flat prior: p(θS , θN |data)

Strong protection: P(θN − θS > .5 | data) = sum of red = .88075

Some protection: P(θN > θS | data) = sum pink and red = .99995
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Continuous two-parameter distributions

Sometimes continuous parameters are more natural.

Malaria example (from class notes):
discrete prior table from the class notes.
Similarly colored version for the continuous parameters (θS , θN)

over range [0, 1]× [0, 1].

θN\θS 0 0.2 0.4 0.6 0.8 1

1 (0,1) (.2,1) (.4,1) (.6,1) (.8,1) (1,1)

0.8 (0,.8) (.2,.8) (.4,.8) (.6,.8) (.8,.8) (1,.8)

0.6 (0,.6) (.2,.6) (.4,.6) (.6,.6) (.8,.6) (1,.6)

0.4 (0,.4) (.2,.4) (.4,.4) (.6,.4) (.8,.4) (1,.4)

0.2 (0,.2) (.2,.2) (.4,.2) (.6,.2) (.8,.2) (1,.2)

0 (0,0) (.2,0) (.4,0) (.6,0) (.8,0) (1,0) θS

θN θN < θS

θS < θN

θN − θS > 0.6

1

1

0.6

The probabilities are given by double integrals over regions.
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Treating severe respiratory failure*

*Adapted from Statistics a Bayesian Perspective by Donald Berry

Two treatments for newborns with severe respiratory failure.

1. CVT: conventional therapy (hyperventilation and drugs)

2. ECMO: extracorporeal membrane oxygenation (invasive procedure)

In 1983 in Michigan:

19/19 ECMO babies survived and 0/3 CVT babies survived.

Later Harvard ran a randomized study:

28/29 ECMO babies survived and 6/10 CVT babies survived.
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Board question: updating two parameter priors

Michigan: 19/19 ECMO babies and 0/3 CVT babies survived.

Harvard: 28/29 ECMO babies and 6/10 CVT babies survived.

θE = probability that an ECMO baby survives
θC = probability that a CVT baby survives

Consider the values 0.125, 0.375, 0.625, 0.875 for θE and θS

1. Make the 4× 4 prior table for a flat prior.
2. Based on the Michigan results, create a reasonable informed prior
table for analyzing the Harvard results (unnormalized is fine).
3. Make the likelihood table for the Harvard results.
4. Find the posterior table for the informed prior.
5. Using the informed posterior, compute the probability that ECMO
is better than CVT.
6. Also compute the posterior probability that θE − θC ≥ 0.6.
(The posted solutions will also show 4-6 for the flat prior.)
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Solution

Flat prior
θE

0.125 0.375 0.625 0.875

0.125 0.0625 0.0625 0.0625 0.0625

θC 0.375 0.0625 0.0625 0.0625 0.0625

0.625 0.0625 0.0625 0.0625 0.0625

0.875 0.0625 0.0625 0.0625 0.0625

Informed prior (this is unnormalized)
θE

0.125 0.375 0.625 0.875

0.125 18 18 32 32

θC 0.375 18 18 32 32

0.625 18 18 32 32

0.875 18 18 32 32

(Rationale for the informed prior is on the next slide.)

April  18,  2017     16 / 33



Solution continued
Since 19/19 ECMO babies survived we believe θE is probably near 1.0
That 0/3 CVT babies survived is not enough data to move from a uniform
distribution. (Or we might distribute a little more probability to larger θC .)
So for θE we split 64% of probability in the two higher values and 36% for
the lower two. Our prior is the same for each value of θC .

Likelihood
Entries in the likelihood table are θ28(1− θ )θ6 (1 4

E E C − θC ) . We don’t bother
including the binomial coefficients since they are the same for every entry.

θE
0.125 0.375 0.625 0.875

0.125 1.012e-31 1.653e-18 1.615e-12 6.647-09

θC 0.375 1.920e-29 3.137e-16 3.065e-10 1.261-06

0.625 5.332e-29 8.713e-16 8.513e-10 3.504e-06

0.875 4.95e-30 8.099e-17 7.913e-11 3.257e-07

(Posteriors are on the next slides).
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Solution continued
Flat posterior
The posterior table is found by multiplying the prior and likelihood tables
and normalizing so that the sum of the entries is 1. We call the posterior
derived from the flat prior the flat posterior. (Of course the flat posterior
is not itself flat.)

θE
0.125 0.375 0.625 0.875

0.125 .984e-26 3.242e-13 3.167e-07 0.001

θc 0.375 .765e-24 6.152e-11 6.011e-05 0.247

0.625 1.046e-23 1.709e-10 1.670e-04 0.687
0.875 9.721e-25 1.588e-11 1.552e-05 0.0639

The boxed entries represent most of the probability where θE > θC .

All our computations were done in R. For the flat posterior:
Probability ECMO is better than CVT is

P(θE > θC |Harvard data) = 0.936
P(θE − θC ≥ 0.6 |Harvard data) = 0.001
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Solution continued

Informed posterior
θE

0.125 0.375 0.625 0.875

0.125 1.116e-26 1.823e-13 3.167e-07 0.001

θC 0.375 2.117e-24 3.460e-11 6.010e-05 0.2473

0.625 5.882e-24 9.612e-11 1.669e-04 0.6871

0.875 5.468e-25 8.935e-12 1.552e-05 0.0638

For the informed posterior:
P(θE > θC |Harvard data) = 0.936
P(θE − θC ≥ 0.6 |Harvard data) = 0.001

Note: Since both flat and informed prior gave the same answers we gain
confidence that these calculations are robust. That is, they are not too
sensitive to our exact choice prior.
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Probability intervals

Example. If P(a ≤ θ ≤ b) = 0.7 then [a, b] is a 0.7 probability
interval for θ. We also call it a 70% probability interval.

Example. Between the 0.05 and 0.55 quantiles is a 0.5
probability interval. Another 50% probability interval goes from
the 0.25 to the 0.75 quantiles.

Symmetric probability intevals. A symmetric 90% probability
interval goes from the 0.05 to the 0.95 quantile.

Q-notation. Writing qp for the p quantile we have 0.5
probability intervals [q0.25, q0.75] and [q0.05, q0.55].

Uses. To summarize a distribution; To help build a subjective
prior.
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Probability intervals in Bayesian updating

We have p-probability intervals for the prior f (θ).

We have p-probability intervals for the posterior f (θ|x).

The latter tends to be smaller than the former. Thanks data!

Probability intervals are good, concise statements about our
current belief/understanding of the parameter of interest.

We can use them to help choose a good prior.
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Probability intervals for normal distributions

Red = 0.68, magenta = 0.9, green = 0.5
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Probability intervals for beta distributions

Red = 0.68, magenta = 0.9, green = 0.5
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Concept question

To convert an 80% probability interval to a 90% interval should you
shrink it or stretch it?

1. Shrink 2. Stretch.

answer: 2. Stretch. A bigger probability requires a bigger interval.
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Reading questions
The following slides contain bar graphs of last year’s responses to the
reading questions. Each bar represents one student’s estimate of their own
50% probability interval (from the 0.25 quantile to the 0.75 quantile).

Here is what we found for answers to the questions:

1. Airline deaths in 100 years: We extracted this data from a government
census table at https://www2.census.gov/library/publications/
2011/compendia/statab/131ed/2012-statab.pdf page 676 There
were 13116 airline fatalities in the 18 years from 1990 to 2008. In the 80
years before that there were fewer people flying, but it was probably more
dangerous. Let’s assume they balance out and estimate the total number
of fatalities in 100 years as 5× 13116 ≈ 66000.

2. Number of girls born in the world each year: I had trouble finding a
reliable source. Wiki.answers.com gave the number of 130 million births in
2005. If we take what seems to be the accepted ratio of 1.07 boys born for
every girl then 130/2.07 = 62.8 million baby girls.
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Reading questions continued

3. Percentage of Black or African-Americans in the U.S as of 2015.:
13.3% (https://www.census.gov/quickfacts/)

4. Number of French speakers world-wide: 72-79 million native speakers,
265 million primary + secondary speaker
(http://www2.ignatius.edu/faculty/turner/languages.htm)

5. Number of abortions in the U.S. each year: 1.2 million (http:
//www.guttmacher.org/in-the-know/characteristics.html)
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Subjective probability 1 (50% probability interval)

10 50000

66000
Airline deaths in 100 years
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Subjective probability 2 (50% probability interval)

100 500000000

63000000
Number of girls born in world each year

April  18,  2017     28 / 33



Subjective probability 3 (50% probability interval)

0 100

13
Percentage of African-Americans in US
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Subjective probability 3 censored (50% probability interval)

Censored by changing numbers less than 1 to percentages and
ignoring numbers bigger that 100.

5 100

13
Percentage of African-Americans in US (censored data)
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Subjective probability 4 (50% probability interval)

100 1000000000

75000000

native speakers

able to speak French

265000000
Number of French speakers world-wide
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Subjective probability 5 (50% probability interval)

100 1500000

1200000
Number of abortions in the U.S. each year
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