Conjugate Priors: Beta and Normal 18.05 Spring 2014

Review: Continuous priors, discrete data

'Bent' coin: unknown probability θ of heads.

Prior $f(\theta) = 2\theta$ on [0,1].

Data: heads on one toss.

Question: Find the posterior pdf to this data.

		Bayes				
hypoth.	prior	likelihood	numerator	posterior		
θ	$2\theta d\theta$	θ	$2\theta^2 d\theta$	$3\theta^2 d\theta$		
Total	1		$T = \int_0^1 2\theta^2 d\theta = 2/3$	1		

Posterior pdf: $f(\theta|x) = 3\theta^2$.

Review: Continuous priors, continuous data

Bayesian update table

Bayes						
hypoth.	prior	likeli.	numerator	posterior		
θ	$f(\theta) d\theta$	$f(x \mid \theta)$	$f(x \mid \theta)f(\theta) d\theta$	$f(\theta \mid x) d\theta = \frac{f(x \mid \theta) f(\theta) d\theta}{f(x)}$		
total	1		<i>f</i> (<i>x</i>)	1		

$$f(x) = \int f(x \mid \theta) f(\theta) d\theta$$

Notice that we overuse the letter f. It is a generic symbol meaning 'whatever function is appropriate here'.

Romeo and Juliet

See class 14 slides

Updating with normal prior and normal likelihood

A normal prior is conjugate to a normal likelihood with known σ .

- Data: $x_1, x_2, ..., x_n$
- Normal likelihood. $x_1, x_2, \dots, x_n \sim N(\theta, \sigma^2)$

Assume θ is our unknown parameter of interest, σ is known.

- Normal prior. $\theta \sim N(\mu_{prior}, \sigma_{prior}^2)$.
- Normal Posterior. $\theta \sim N(\mu_{post}, \sigma_{post}^2)$.
- We have simple updating formulas that allow us to avoid complicated algebra or integrals (see next slide).

hypoth.	prior	likelihood	posterior
θ	$f(heta) \sim N(\mu_{prior}, \sigma^2_{prior})$	$f(x \theta) \sim N(\theta, \sigma^2)$	$f(\theta x) \sim N(\mu_{post}, \sigma_{post}^2)$
θ	$c_1 \exp\left(\frac{-(\theta-\mu_{prior})^2}{2\sigma_{prior}^2}\right)$	$c_2 \exp\left(\frac{-(x-\theta)^2}{2\sigma^2}\right)$	$c_3 \exp\left(\frac{-(\theta-\mu_{\text{post}})^2}{2\sigma_{\text{post}}^2}\right)$

Board question: Normal-normal updating formulas

$$a = rac{1}{\sigma_{
m prior}^2} \qquad b = rac{n}{\sigma^2}, \qquad \mu_{
m post} = rac{a\mu_{
m prior} + bar{x}}{a+b}, \qquad \sigma_{
m post}^2 = rac{1}{a+b}.$$

Suppose we have one data point x = 2 drawn from $N(\theta, 3^2)$

Suppose θ is our parameter of interest with prior $\theta \sim N(4, 2^2)$.

- **0.** Identify μ_{prior} , σ_{prior} , σ , n, and \bar{x} .
- **1.** Make a Bayesian update table, but leave the posterior as an unsimplified product.
- 2. Use the updating formulas to find the posterior.
- **3.** By doing enough of the algebra, understand that the updating formulas come by using the updating table and doing a lot of algebra.

Concept question: normal priors, normal likelihood

Blue graph = prior

Red lines = data in order: 3, 9, 12

(a) Which plot is the posterior to just the first data value? (Click on the plot number.)

Concept question: normal priors, normal likelihood

Blue graph = prior

Red lines = data in order: 3, 9, 12

(b) Which graph is posterior to all 3 data values? (Click on the plot number.)

Board question: normal/normal

For data x_1, \ldots, x_n with data mean $\bar{x} = \frac{x_1 + \ldots + x_n}{n}$

$$a = rac{1}{\sigma_{
m prior}^2} \qquad b = rac{n}{\sigma^2}, \qquad \mu_{
m post} = rac{a\mu_{
m prior} + bar{x}}{a+b}, \qquad \sigma_{
m post}^2 = rac{1}{a+b}.$$

Question. On a basketball team the average free throw percentage over all players is a N(75, 36) distribution. In a given year individual players free throw percentage is N(θ , 16) where θ is their career average.

This season Sophie Lie made 85 percent of her free throws. What is the posterior expected value of her career percentage θ ?

Conjugate priors

A prior is conjugate to a likelihood if the posterior is the same type of distribution as the prior.

Updating becomes algebra instead of calculus.

	hypothesis	data	prior	likelihood	posterior
Bernoulli/Beta	$\theta \in [0, 1]$	x	beta(a, b)	$Bernoulli(\theta)$	beta(a+1,b) or $beta(a,b+1)$
	θ	x = 1	$c_1\theta^{a-1}(1-\theta)^{b-1}$	θ	$c_3\theta^a(1-\theta)^{b-1}$
	θ	x = 0	$c_1\theta^{a-1}(1-\theta)^{b-1}$	$1 - \theta$	$c_3\theta^{a-1}(1-\theta)^b$
Binomial/Beta	$\theta \in [0, 1]$	x	beta(a, b)	$\operatorname{binomial}(N,\theta)$	beta(a+x,b+N-x)
(fixed N)	θ	x	$c_1\theta^{a-1}(1-\theta)^{b-1}$	$c_2\theta^x(1-\theta)^{N-x}$	$c_3\theta^{a+x-1}(1-\theta)^{b+N-x-1}$
Geometric/Beta	$\theta \in [0, 1]$	x	beta(a, b)	$geometric(\theta)$	beta(a+x,b+1)
	θ	x	$c_1\theta^{a-1}(1-\theta)^{b-1}$	$\theta^x(1-\theta)$	$c_3\theta^{a+x-1}(1-\theta)^b$
Normal/Normal	$\theta \in (-\infty, \infty)$	x	$N(\mu_{prior}, \sigma_{prior}^2)$	$N(\theta, \sigma^2)$	$N(\mu_{post}, \sigma_{post}^2)$
(fixed σ^2)	θ	x	$c_1 \exp\left(\frac{-(\theta - \mu_{\text{prior}})^2}{2\sigma_{\text{prior}}^2}\right)$	$c_2 \exp\left(\frac{-(x-\theta)^2}{2\sigma^2}\right)$	$c_3 \exp\left(\frac{(\theta - \mu_{\text{post}})^2}{2\sigma_{\text{post}}^2}\right)$

There are many other likelihood/conjugate prior pairs.

Concept question: conjugate priors

Which are conjugate priors?

	hypothesis	data	prior	likelihood
a) Exponential/Normal	$\theta \in [0, \infty)$	x	$N(\mu_{prior}, \sigma_{prior}^2)$	$\exp(\theta)$
	θ	x	$c_1 \exp\left(-\frac{(\theta - \mu_{\text{prior}})^2}{2\sigma_{\text{prior}}^2}\right)$	$\theta e^{-\theta x}$
b) Exponential/Gamma	$\theta \in [0, \infty)$	x	Gamma(a, b)	$\exp(\theta)$
	θ	x	$c_1 \theta^{a-1} e^{-b\theta}$	$\theta e^{-\theta x}$
c) Binomial/Normal	$\theta \in [0,1]$	x	$N(\mu_{prior}, \sigma_{prior}^2)$	$\operatorname{binomial}(N,\theta)$
(fixed N)	θ	x	$c_1 \exp\left(-\frac{(\theta - \mu_{\text{prior}})^2}{2\sigma_{\text{prior}}^2}\right)$	$c_2 \theta^x (1-\theta)^{N-x}$

1. none 2. a 3. b 4. c

5. a,b 6. a,c 7. b,c 8. a,b,c

Variance can increase

Normal-normal: variance **always** decreases with data. Beta-binomial: variance **usually** decreases with data.

Variance of beta(2,12) (blue) is bigger than that of beta(12,12) (magenta), but beta(12,12) can be a posterior to beta(2,12)

Table discussion: likelihood principle

Suppose the prior has been set. Let x_1 and x_2 be two sets of data. Which of the following are true.

- (a) If the likelihoods $f(x_1|\theta)$ and $f(x_2|\theta)$ are the same then they result in the same posterior.
- **(b)** If x_1 and x_2 result in the same posterior then their likelihood functions are the same.
- (c) If the likelihoods $f(x_1|\theta)$ and $f(x_2|\theta)$ are proportional then they result in the same posterior.
- (d) If two likelihood functions are proportional then they are equal.

Concept question: strong priors

Say we have a bent coin with unknown probability of heads θ .

We are convinced that $\theta \leq 0.7$.

Our prior is uniform on [0, 0.7] and 0 from 0.7 to 1.

We flip the coin 65 times and get 60 heads.

Which of the graphs below is the posterior pdf for θ ?

MIT OpenCourseWare https://ocw.mit.edu

18.05 Introduction to Probability and Statistics Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.