Bayesian Updating: Continuous Priors 18.05 Spring 2014

Beta distribution

$\operatorname{Beta}(a, b)$ has density

$$
f(\theta)=\frac{(a+b-1)!}{(a-1)!(b-1)!} \theta^{a-1}(1-\theta)^{b-1}
$$

http://mathlets.org/mathlets/beta-distribution/
Observation:
The coefficient is a normalizing factor, so if we have a pdf

$$
f(\theta)=c \theta^{a-1}(1-\theta)^{b-1}
$$

then

$$
\theta \sim \operatorname{beta}(a, b)
$$

and

$$
c=\frac{(a+b-1)!}{(a-1)!(b-1)!}
$$

Board question preamble: beta priors

Suppose you are testing a new medical treatment with unknown probability of success θ. You don't know that θ, but your prior belief is that it's probably not too far from 0.5 . You capture this intuition with a beta $(5,5)$ prior on θ.

Beta(5,5) for θ

To sharpen this distribution you take data and update the prior.
Question on next slide.

Board question: beta priors

- $\operatorname{Beta}(a, b): f(\theta)=\frac{(a+b-1)!}{(a-1)!(b-1)!} \theta^{a-1}(1-\theta)^{b-1}$
- Treatment has prior $f(\theta) \sim \operatorname{beta}(5,5)$

1. Suppose you test it on 10 patients and have 6 successes. Find the posterior distribution on θ. Identify the type of the posterior distribution.
2. Suppose you recorded the order of the results and got SSSFFSSSFF. Find the posterior based on this data.
3. Using your answer to (2) give an integral for the posterior predictive probability of success with the next patient.
4. Use what you know about pdf's to evaluate the integral without computing it directly

Solution

1. Prior pdf is $f(\theta)=\frac{9!}{4!4!} \theta^{4}(1-\theta)^{4}=c_{1} \theta^{4}(1-\theta)^{4}$.
hypoth. prior likelihood Bayes numer. posterior
$\theta \quad c_{1} \theta^{4}(1-\theta)^{4} d \theta \quad\binom{10}{6} \theta^{6}(1-\theta)^{4} \quad c_{3} \theta^{10}(1-\theta)^{8} d \theta \quad$ beta $(11,9)$

We know the normalized posterior is a beta distribution because it has the form of a beta distribution $\left(c \theta^{a-}(1-\theta)^{b-1}\right.$ on $\left.[0,1]\right)$ so by our earlier observation it must be a beta distribution.
2. The answer is the same. The only change is that the likelihood has a coefficient of 1 instead of a binomial coefficent.
3. The posterior on θ is beta $(11,9)$ which has density

$$
f(\theta \mid, \text { data })=\frac{19!}{10!8!} \theta^{10}(1-\theta)^{8}
$$

Solution to (3) continued on next slide

Solution continued

The law of total probability says that the posterior predictive probability of success is

$$
\begin{aligned}
P(\text { success } \mid \text { data }) & =\int_{0}^{1} f(\text { success } \mid \theta) \cdot f(\theta \mid \text { data }) d \theta \\
& =\int_{0}^{1} \theta \cdot \frac{19!}{10!8!} \theta^{10}(1-\theta)^{8} d \theta=\int_{0}^{1} \frac{19!}{10!8!} \theta^{11}(1-\theta)^{8} d \theta
\end{aligned}
$$

4. We compute the integral in (3) by relating it to the pdf of beta(12, 9$)$: $\frac{20!}{11!8!} \theta^{11}(1-\theta)^{7}$. Since the pdf of beta $(12,9)$ integrates to 1 we have

$$
\int_{0}^{1} \frac{20!}{11!8!} \theta^{11}(1-\theta)^{7}=1 \quad \Rightarrow \quad \int_{0}^{1} \theta^{11}(1-\theta)^{7}=\frac{11!8!}{20!}
$$

Thus

$$
\int_{0}^{1} \frac{19!}{10!8!} \theta^{11}(1-\theta)^{8} d \theta=\frac{19!}{10!8!} \cdot \frac{11!8!}{20!} \cdot=\frac{11}{20}
$$

Conjugate priors

We had

- Prior $f(\theta) d \theta$: beta distribution
- Likelihood $p(x \mid \theta)$: binomial distribution
- Posterior $f(\theta \mid x) d \theta$: beta distribution

The beta distribution is called a conjugate prior for the binomial likelihood.

That is, the beta prior becomes a beta posterior and repeated updating is easy!

Concept Question

Suppose your prior $f(\theta)$ in the bent coin example is $\operatorname{Beta}(6,8)$. You flip the coin 7 times, getting 2 heads and 5 tails. What is the posterior pdf $f(\theta \mid x)$?

1. $\operatorname{Beta}(2,5)$
2. $\operatorname{Beta}(3,6)$
3. Beta $(6,8)$
4. $\operatorname{Beta}(8,13)$

We saw in the previous board question that 2 heads and 5 tails will update a beta (a, b) prior to a beta $(a+2, b+5)$ posterior.
answer: (4) beta $(8,13)$.

Reminder: predictive probabilities

Continuous hypotheses θ, discrete data x_{1}, x_{2}, \ldots
(Assume trials are independent given the hypothesis θ.)
Prior predictive probability

$$
p\left(x_{1}\right)=\int p\left(x_{1} \mid \theta\right) f(\theta) d \theta
$$

Posterior predictive probability

$$
p\left(x_{2} \mid x_{1}\right)=\int p\left(x_{2} \mid \theta\right) f\left(\theta \mid x_{1}\right) d \theta
$$

Analogous to discrete hypotheses: $\mathcal{H}_{1}, \mathcal{H}_{2}, \ldots$.

$$
p\left(x_{1}\right)=\sum_{i=1}^{n} p\left(x_{1} \mid \mathcal{H}_{i}\right) P\left(\mathcal{H}_{i}\right) \quad p\left(x_{2} \mid x_{1}\right)=\sum_{i=1}^{n} p\left(x_{2} \mid \mathcal{H}_{i}\right) p\left(\mathcal{H}_{i} \mid x_{1}\right) .
$$

Continuous priors, continuous data

Bayesian update tables:

hypoth.	prior	likelihood	Bayes numerator	posterior $f(\theta \mid x) d \theta$
θ	$f(\theta) d \theta$	$f(x \mid \theta)$	$f(x \mid \theta) f(\theta) d \theta$	$\frac{f(x \mid \theta) f(\theta) d \theta}{f(x)}$
total	1		$f(x)$	1

$$
f(x)=\int f(x \mid \theta) f(\theta) d \theta
$$

Normal prior, normal data
$\mathrm{N}\left(\mu, \sigma^{2}\right)$ has density

$$
f(y)=\frac{1}{\sigma \sqrt{2 \pi}} \mathrm{e}^{-(y-\mu)^{2} / 2 \sigma^{2}}
$$

Observation:

The coefficient is a normalizing factor, so if we have a pdf

$$
f(y)=c \mathrm{e}^{-(y-\mu)^{2} / 2 \sigma^{2}}
$$

then

$$
y \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)
$$

and

$$
c=\frac{1}{\sigma \sqrt{2 \pi}}
$$

Board question: normal prior, normal data

- $\mathrm{N}\left(\mu, \sigma^{2}\right)$ has pdf: $f(y)=\frac{1}{\sigma \sqrt{2 \pi}} \mathrm{e}^{-(y-\mu)^{2} / 2 \sigma^{2}}$.
- Suppose our data follows a $N(\theta, 4)$ distribution with unknown mean θ and variance 4. That is

$$
f(x \mid \theta)=\operatorname{pdf} \text { of } \mathrm{N}(\theta, 4)
$$

- Suppose our prior on θ is $\mathrm{N}(3,1)$.

Suppose we obtain data $x_{1}=5$.

1. Use the data to find the posterior pdf for θ.

Write out your tables clearly. Use (and understand) infinitesimals. You will have to remember how to complete the square to do the updating!

Solution

We have:
Prior: $\theta \sim \mathrm{N}(3,1): \quad f(\theta)=c_{1} \mathrm{e}^{-(\theta-3)^{2} / 2}$
Likelihood $x \sim \mathrm{~N}(\theta, 4): \quad f(x \mid \theta)=c_{2} \mathrm{e}^{-(x-\theta)^{2} / 8}$
For $x=5$ the likelihood is $c_{2} \mathrm{e}^{-(5-\theta)^{2} / 8}$

hypoth.	prior	likelihood	Bayes numer.
θ	$c_{1} \mathrm{e}^{-(\theta-3)^{2} / 2} d \theta$	$c_{2} \mathrm{e}^{-(5-\theta)^{2} / 8} d x$	$c_{3} \mathrm{e}^{-(\theta-3)^{2} / 2} \mathrm{e}^{-(5-\theta)^{2} / 8} d \theta d x$

A bit of algebraic manipulation of the Bayes numerator gives

$$
\begin{aligned}
c_{3} \mathrm{e}^{-(\theta-3)^{2} / 2} \mathrm{e}^{-(5-\theta)^{2} / 8} d \theta d x & =c_{3} \mathrm{e}^{-\frac{5}{8}\left[\theta^{2}-\frac{34}{5} \theta+61\right]}=c_{3} \mathrm{e}^{-\frac{5}{8}\left[(\theta-17 / 5)^{2}+61-(17 / 5)^{2}\right]} \\
& =c_{3} \mathrm{e}^{-\frac{5}{8}\left(61-(17 / 5)^{2}\right)} \mathrm{e}^{-\frac{5}{8}(\theta-17 / 5)^{2}} \\
& =c_{4} \mathrm{e}^{-\frac{5}{8}(\theta-17 / 5)^{2}}=c_{4} \mathrm{e}^{-\frac{(\theta-17 / 5)^{2}}{2 \cdot \frac{4}{5}}}
\end{aligned}
$$

The last expression shows the posterior is $N\left(\frac{17}{5}, \frac{4}{5}\right)$.

Solution graphs

$$
\text { prior }=\text { blue } ; \text { posterior }=\text { purple } ; \text { data }=\text { red }
$$

Data:
Prior is normal:
Likelihood is normal:
Posterior is normal $\quad \mu_{\text {posterior }}=3.4 ; \quad \sigma_{\text {posterior }}=0.894$

- Will see simple formulas for doing this update next time.

Board question: Romeo and Juliet

Romeo is always late. How late follows a uniform distribution uniform $(0, \theta)$ with unknown parameter θ in hours.

Juliet knows that $\theta \leq 1$ hour and she assumes a flat prior for θ on [0, 1].

On their first date Romeo is 15 minutes late. Use this data to update the prior distribution for θ.
(a) Find and graph the prior and posterior pdfs for θ.
(b) Find the prior predictive pdf for how late Romeo will be on the first date and the posterior predictive pdf of how late he'll be on the second date (if he gets one!). Graph these pdfs.

See next slides for solution

Solution

Parameter of interest: $\theta=$ upper bound on R's lateness.
Data: $x_{1}=0.25$.
Goals: (a) Posterior pdf for θ
(b) Predictive pdf's -requires pdf's for θ

In the update table we split the hypotheses into the two different cases $\theta<0.25$ and $\theta \geq 0.25$:

	prior	likelihood	Bayes	posterior
hyp.	$f(\theta)$	$f\left(x_{1} \mid \theta\right)$	numerator	$f\left(\theta \mid x_{1}\right)$
$\theta<0.25$	$d \theta$	0	0	0
$\theta \geq 0.25$	$d \theta$	$\frac{1}{\theta}$	$\frac{d \theta}{\theta}$	$\frac{c}{\theta} d \theta$
Tot.	1		T	1

The normalizing constant c must make the total posterior probability 1 , so

$$
c \int_{0.25}^{1} \frac{d \theta}{\theta}=1 \Rightarrow c=\frac{1}{\ln (4)} .
$$

Continued on next slide.

Solution graphs

Prior and posterior pdf's for θ.

Solution graphs continued

(b) Prior prediction: The likelihood function falls into cases:

$$
f\left(x_{1} \mid \theta\right)= \begin{cases}\frac{1}{\theta} & \text { if } \theta \geq x_{1} \\ 0 & \text { if } \theta<x_{1}\end{cases}
$$

Therefore the prior predictive pdf of x_{1} is

$$
f\left(x_{1}\right)=\int f\left(x_{1} \mid \theta\right) f(\theta) d \theta=\int_{x_{1}}^{1} \frac{1}{\theta} d \theta=-\ln \left(x_{1}\right)
$$

continued on next slide

Solution continued

Posterior prediction:
The likelihood function is the same as before:

$$
f\left(x_{2} \mid \theta\right)=\begin{array}{cc}
\frac{1}{\theta} & \text { if } \theta \geq x_{2} \\
0 & \text { if } \theta<x_{2}
\end{array}
$$

The posterior predictive pdf $f\left(x_{2} \mid x_{1}\right)=\int f\left(x_{2} \mid \theta\right) f\left(\theta \mid x_{1}\right) d \theta$. The integrand is 0 unless $\theta>x_{2}$ and $\theta>0.25$. There are two cases:

$$
\begin{array}{ll}
\text { If } x_{2}<0.25: & f\left(x_{2} \mid x_{1}\right)=\int_{0.25}^{1} \frac{c}{\theta^{2}} d \theta=3 c=3 / \ln (4) . \\
\text { If } x_{2} \geq 0.25: & f\left(x_{2} \mid x_{1}\right)=\int_{x_{2}}^{1} \frac{c}{\theta^{2}} d \theta=\left(\frac{1}{x_{2}}-1\right) / \ln (4)
\end{array}
$$

Plots of the predictive pdf's are on the next slide.

Solution continued

Prior (red) and posterior (blue) predictive pdf's for x_{2}

From discrete to continuous Bayesian updating

Bent coin with unknown probability of heads θ.
Data x_{1} : heads on one toss.
Start with a flat prior and update:

hyp.	prior	likelihood	Bayes numerator	numerator
θ	$d \theta$	θ	$\theta d \theta$	$2 \theta d \theta$
Total	1		$\int_{0}^{1} \theta d \theta=1 / 2$	1

Posterior pdf: $\quad f\left(\theta \mid x_{1}\right)=2 \theta$.

Approximate continuous by discrete

- approximate the continuous range of hypotheses by a finite number of hypotheses.
- create the discrete updating table for the finite number of hypotheses.
- consider how the table changes as the number of hypotheses goes to infinity.

Chop $[0,1]$ into 4 intervals

hypothesis	prior	likelihood	Bayes num.	posterior
$\theta=1 / 8$	$1 / 4$	$1 / 8$	$(1 / 4) \times(1 / 8)$	$1 / 16$
$\theta=3 / 8$	$1 / 4$	$3 / 8$	$(1 / 4) \times(3 / 8)$	$3 / 16$
$\theta=5 / 8$	$1 / 4$	$5 / 8$	$(1 / 4) \times(5 / 8)$	$5 / 16$
$\theta=7 / 8$	$1 / 4$	$7 / 8$	$(1 / 4) \times(7 / 8)$	$7 / 16$
Total	1	-	$\sum_{i=1}^{n} \theta_{i} \Delta \theta$	1

Chop $[0,1]$ into 12 intervals

hypothesis	prior	likelihood	Bayes num.	posterior
$\theta=1 / 24$	$1 / 12$	$1 / 24$	$(1 / 12) \times(1 / 24)$	$1 / 144$
$\theta=3 / 24$	$1 / 12$	$3 / 24$	$(1 / 12) \times(3 / 24)$	$3 / 144$
$\theta=5 / 24$	$1 / 12$	$5 / 24$	$(1 / 12) \times(5 / 24)$	$5 / 144$
$\theta=7 / 24$	$1 / 12$	$7 / 24$	$(1 / 12) \times(7 / 24)$	$7 / 144$
$\theta=9 / 24$	$1 / 12$	$9 / 24$	$(1 / 12) \times(9 / 24)$	$9 / 144$
$\theta=11 / 24$	$1 / 12$	$11 / 24$	$(1 / 12) \times(11 / 24)$	$11 / 144$
$\theta=13 / 24$	$1 / 12$	$13 / 24$	$(1 / 12) \times(13 / 24)$	$13 / 144$
$\theta=15 / 24$	$1 / 12$	$15 / 24$	$(1 / 12) \times(15 / 24)$	$15 / 144$
$\theta=17 / 24$	$1 / 12$	$17 / 24$	$(1 / 12) \times(17 / 24)$	$17 / 144$
$\theta=19 / 24$	$1 / 12$	$19 / 24$	$(1 / 12) \times(19 / 24)$	$19 / 144$
$\theta=21 / 24$	$1 / 12$	$21 / 24$	$(1 / 12) \times(21 / 24)$	$21 / 144$
$\theta=23 / 24$	$1 / 12$	$23 / 24$	$(1 / 12) \times(23 / 24)$	$23 / 144$
Total	1	-	$\sum_{i=1}^{n} \theta_{i} \Delta \theta$	
			1	

Density historgram

Density historgram for posterior pmf with 4 and 20 slices.

The original posterior pdf is shown in red.

MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

