
Bayesian Updating: Discrete Priors: 18.05 Spring 2014

SEASHELL AND DON'T HOLD IT TO YOUR EAR, YOU CAN PROBABLY HEAR THE OCEAN.

http://xkcd.com/1236/

January 1, 2017 1 / 16

Learning from experience

Which treatment would you choose?

- 1. Treatment 1: cured 100% of patients in a trial.
- 2. Treatment 2: cured 95% of patients in a trial.
- 3. Treatment 3: cured 90% of patients in a trial.

Which treatment would you choose?

- 1. Treatment 1: cured 3 out of 3 patients in a trial.
- 2. Treatment 2: cured 19 out of 20 patients treated in a trial.

3. Standard treatment: cured 90000 out of 100000 patients in clinical practice.

Which die is it?

- I have a bag containing dice of two types: 4-sided and 10-sided.
- Suppose I pick a die at random and roll it.
- Based on what I rolled which type would you guess I picked?

- Suppose you find out that the bag contained one 4-sided die and one 10-sided die. Does this change your guess?
- Suppose you find out that the bag contained one 4-sided die and 100 10-sided dice. Does this change your guess?

Board Question: learning from data

- A certain disease has a prevalence of 0.005.
- A screening test has 2% false positives an 1% false negatives.

Suppose a patient is screened and has a positive test.

- Represent this information with a tree and use Bayes' theorem to compute the probabilities the patient does and doesn't have the disease.
- Identify the data, hypotheses, likelihoods, prior probabilities and posterior probabilities.
- Make a full likelihood table containing all hypotheses and possible test data.
- Redo the computation using a Bayesian update table. Match the terms in your table to the terms in your previous calculation.

Board Question: Dice

Five dice: 4-sided, 6-sided, 8-sided, 12-sided, 20-sided.

Suppose I picked one at random and, without showing it to you, rolled it and reported a 13.

- 1. Make the full likelihood table (be smart about identical columns).
- **2.** Make a Bayesian update table and compute the posterior probabilities that the chosen die is each of the five dice.
- 3. Same question if I rolled a 5.
- 4. Same question if I rolled a 9.

(Keep the tables for 5 and 9 handy! Do not erase!)

 $\mathcal{D}=\text{`rolled a 13'}$

		Bayes				
hypothesis	prior	likelihood	numerator	posterior		
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mathcal{H})$	$P(\mathcal{D} \mathcal{H}) = P(\mathcal{D} \mathcal{H})P(\mathcal{H})$			
\mathcal{H}_4	1/5	0	0	0		
\mathcal{H}_6	1/5	0	0	0		
\mathcal{H}_8	1/5	0	0	0		
\mathcal{H}_{12}	1/5	0	0	0		
\mathcal{H}_{20}	1/5	1/20	1/100	1		
total	1		1/100	1		

 $\mathcal{D}=\text{`rolled a 5'}$

		Bayes			
hypothesis	prior	likelihood	numerator	posterior	
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mathcal{H})$	$P(\mathcal{D} \mathcal{H})P(\mathcal{H})$	$P(\mathcal{H} \mathcal{D})$	
\mathcal{H}_4	1/5	0	0	0	
\mathcal{H}_6	1/5	1/6	1/30	0.392	
\mathcal{H}_8	1/5	1/8	1/40	0.294	
\mathcal{H}_{12}	1/5	1/12	1/60	0.196	
\mathcal{H}_{20}	1/5	1/20	1/100	0.118	
total	1		0.085	1	

 $\mathcal{D}=\text{`rolled a 9'}$

		Bayes			
hypothesis	prior	likelihood	numerator	posterior	
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mathcal{H})$	$P(\mathcal{D} \mathcal{H})P(\mathcal{H})$	$P(\mathcal{H} \mathcal{D})$	
\mathcal{H}_4	1/5	0	0	0	
\mathcal{H}_6	1/5	0	0	0	
\mathcal{H}_8	1/5	0	0	0	
\mathcal{H}_{12}	1/5	1/12	1/60	0.625	
\mathcal{H}_{20}	1/5	1/20	1/100	0.375	
total	1		.0267	1	

Suppose I rolled a 5 and then a 9.

Update in two steps:

First for the 5

Then update the update for the 9.

 $\begin{array}{l} \mathcal{D}_1 = \text{`rolled a 5'} \\ \mathcal{D}_2 = \text{`rolled a 9'} \\ \text{Bayes numerator}_1 = \text{likelihood}_1 \times \text{ prior.} \\ \text{Bayes numerator}_2 = \text{likelihood}_2 \times \text{Bayes numerator}_1 \end{array}$

			Bayes		Bayes	
hyp.	prior	likel. 1	num. 1	likel. 2	num. 2	posterior
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D}_1 \mathcal{H})$	* * *	$P(\mathcal{D}_2 \mathcal{H})$	* * *	$P(\mathcal{H} \mathcal{D}_1,\mathcal{D}_2)$
\mathcal{H}_4	1/5	0	0	0	0	0
\mathcal{H}_6	1/5	1/6	1/30	0	0	0
\mathcal{H}_8	1/5	1/8	1/40	0	0	0
\mathcal{H}_{12}	1/5	1/12	1/60	1/12	1/720	0.735
\mathcal{H}_{20}	1/5	1/20	1/100	1/20	1/2000	0.265
total	1				0.0019	1

Board Question

Suppose I rolled a 9 and then a 5.

- Do the Bayesian update in two steps: First update for the 9. Then update the update for the 5.
- 2. Do the Bayesian update in one step The data is $\mathcal{D} =$ '9 followed by 5'

Tabular solution: two steps

 $\begin{array}{l} \mathcal{D}_1 = \text{`rolled a 9'} \\ \mathcal{D}_2 = \text{`rolled a 5'} \\ \text{Bayes numerator}_1 = \text{likelihood}_1 \times \text{ prior.} \\ \text{Bayes numerator}_2 = \text{likelihood}_2 \times \text{Bayes numerator}_1 \end{array}$

			Bayes		Bayes	
hyp.	prior	likel. 1	num. 1	likel. 2	num. 2	posterior
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D}_1 \mathcal{H})$	* * *	$P(\mathcal{D}_2 \mathcal{H})$	* * *	$P(\mathcal{H} \mathcal{D}_1,\mathcal{D}_2)$
\mathcal{H}_4	1/5	0	0	0	0	0
\mathcal{H}_6	1/5	0	0	1/6	0	0
\mathcal{H}_8	1/5	0	0	1/8	0	0
\mathcal{H}_{12}	1/5	1/12	1/60	1/12	1/720	0.735
\mathcal{H}_{20}	1/5	1/20	1/100	1/20	1/2000	0.265
total	1				0.0019	1

Tabular solution: one step

 $\mathcal{D}=$ 'rolled a 9 then a 5'

		Bayes			
hypothesis	prior	likelihood	numerator	posterior	
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mathcal{H})$	$P(\mathcal{D} \mathcal{H}) = P(\mathcal{D} \mathcal{H})P(\mathcal{H})$		
\mathcal{H}_4	1/5	0	0	0	
\mathcal{H}_6	1/5	0	0	0	
\mathcal{H}_8	1/5	0	0	0	
\mathcal{H}_{12}	1/5	1/144	1/720	0.735	
\mathcal{H}_{20}	1/5	1/400	1/2000	0.265	
total	1		0.0019	1	

Board Question: probabilistic prediction

Along with finding posterior probabilities of hypotheses. We might want to make posterior predictions about the next roll.

With the same setup as before let: $D_1 =$ result of first roll $D_2 =$ result of second roll

(a) Find P(D₁ = 5).
(b) Find P(D₂ = 4|D₁ = 5).

Solution

 $\mathcal{D}_1=\text{`rolled a 5'}$

 $\mathcal{D}_2=\text{`rolled a 4'}$

			Bayes			
hyp.	prior	likel. 1	num. 1	post. 1	likel. 2	post. 1 $ imes$ likel. 2
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D}_1 \mathcal{H})$	* * *	$P(\mathcal{H} \mathcal{D}_1)$	$P(\mathcal{D}_2 \mathcal{H},\mathcal{D}_1)$	$P(\mathcal{D}_2 \mathcal{H},\mathcal{D}_1)P(\mathcal{H} \mathcal{D}_1)$
\mathcal{H}_4	1/5	0	0	0	*	0
\mathcal{H}_6	1/5	1/6	1/30	0.392	1/6	$0.392 \cdot 1/6$
\mathcal{H}_8	1/5	1/8	1/40	0.294	1/8	$0.294 \cdot 1/40$
\mathcal{H}_{12}	1/5	1/12	1/60	0.196	1/12	$0.196 \cdot 1/12$
\mathcal{H}_{20}	1/5	1/20	1/100	0.118	1/20	$0.118 \cdot 1/20$
total	1		0.085	1		0.124

The law of total probability tells us $P(D_1)$ is the sum of the Bayes numerator 1 column in the table: $P(D_1) = 0.085$.

The law of total probability tells us $P(D_2|D_1)$ is the sum of the last column in the table: $P(D_2|D_1) = 0.124$

MIT OpenCourseWare https://ocw.mit.edu

18.05 Introduction to Probability and Statistics Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.