Studio 3
 18.05 Spring 2014
 Jeremy Orloff and Jonathan Bloom

Concept questions

Suppose X is a continuous random variable.
a) What is $P(a \leq X \leq a)$?
b) What is $P(X=0)$?
c) Does $P(X=2)=0$ mean X never equals 2 ?

Concept question

Which of the following are graphs of valid cumulative distribution functions?

Add the numbers of the valid cdf's and click that number.

Exponential Random Variables

Parameter: λ (called the rate parameter).
Range: $\quad[0, \infty)$.
Notation: $\operatorname{exponential}(\lambda)$ or $\exp (\lambda)$.
Density: $\quad f(x)=\lambda \mathrm{e}^{-\lambda x}$ for $0 \leq x$.
Models: Waiting time

Continuous analogue of geometric distribution -memoryless!

Uniform and Normal Random Variables

Uniform: $U(a, b)$ or uniform (a, b)
Range: $[a, b]$
PDF: $f(x)=\frac{1}{b-a}$
Normal: $\mathbf{N}\left(\mu, \sigma^{2}\right)$
Range: $(-\infty, \infty]$
PDF: $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \mathrm{e}^{-(x-\mu)^{2} / 2 \sigma^{2}}$
http://mathlets.org/mathlets/probability-distributions/

Table questions

Open the applet

http://mathlets.org/mathlets/probability-distributions/

1. For the standard normal distribution $\mathrm{N}(0,1)$ how much probability is within 1 of the mean? Within 2? Within 3?
2. For $\mathrm{N}\left(0,3^{2}\right)$ how much probability is within σ of the mean? Within 2σ ? Within 3σ.
3. Does changing μ change your answer to problem 2?

Normal probabilities

Rules of thumb:
$P(-1 \leq Z \leq 1) \approx .68$,
$P(-2 \leq Z \leq 2) \approx .95$,
$P(-3 \leq Z \leq 3) \approx .997$

Download R script

Download studio3.zip and unzip it into your 18.05 working directory. Open studio3.r in RStudio.

Histograms

Will discuss in more detail in class 6 .
Made by 'binning' data.
Frequency: height of bar over bin $=\#$ of data points in bin.
Density: area of bar over bin is proportional to \# of data points in bin. Total area of a density histogram is 1 .

Histograms of averages of $\exp (1)$

1. Generate a frequency histogram of 1000 samples from an $\exp (1)$ random variable.
2. Generate a density histogram for the average of 2 independent exp(1) random variable.
3. Using rexp(), matrix() and colMeans() generate a density histogram for the average of 50 independent $\exp (1)$ random variables. Make 10000 sample averages and use a binwidth of . 1 for this. Look at the spread of the histogram.
4. Superimpose a graph of the pdf of $\mathrm{N}(1,1 / 50)$ on your plot in problem 3. (Remember the second parameter in N is σ^{2}.)

MIT OpenCourseWare
http://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

