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The Exponential Matrix 

The work in the preceding note with fundamental matrices was valid 
for any linear homogeneous square system of ODE’s, 

x� = A(t) x . 

However, if the system has constant coefficients, i.e., the matrix A is a con
stant matrix, the results are usually expressed by using the exponential ma
trix, which we now define. 

Recall that if x is any real number, then 

x2 xn 
ex = 1 + x + + . . . + + . . . . (1)

2! n! 

Definition 3 Given an n × n constant matrix A, the exponential matrix eA 

is the n × n matrix defined by 

A2 An 
eA = I + A + + . . . + + . . . . (2)

2! n! 

Each term on the right side of (2) is an n × n matrix adding 
up the ij-th entry of each of these matrices gives you an in
finite series whose sum is the ij-th entry of eA . (The series 
always converges.) 
In the applications, an independent variable t is usually included: 

At e = I + A t + A2 t2 
+ . . . + An tn 

+ . . . . (3)
2! n! 

This is not a new definition, it’s just (2) above applied to the matrix A t in 
which every element of A has been multiplied by t, since for example 

(At)2 = At At = A A t2 = A2t2.· · · 

Try out (2) and (3) on these two examples (the second is very easy, since 
it is not an infinite series). 

Example 3A. Let A = 
0 
a 0 

b . Show: eA = 
e
0 

a

e
0 
b ; and 

eat 0At e = 
0 ebt 



� � � � 

� � 

The Exponential Matrix OCW 18.03SC


Example 3B. Let A = 
0 1 

, show: eA = 
1 1 

and
0 0 0 1 

1 tAt e = .
0 1 

What’s the point of the exponential matrix? The answer is given by the 
theorem below, which says that the exponential matrix provides a royal 
road to the solution of a square system with constant coefficients: no eigen
vectors, no eigenvalues, you just write down the answer! 

Theorem 3 Let A be a square constant matrix. Then 

(1) (a) eAt = Φ� 0(t), the normalized fundamental matrix at 0; 

(2) (b) the unique solution to the IVP x� = Ax, x(0) = x0 is x = 
eAtx0. 

Proof. Recall that in the previous note we saw that if Φ� 0(t) is the normal
ized fundamental matrix then 

The solution to the IVP : x� = A(t) x, x(0) = x0 is x(t) = Φ� 0(t)x0. 
(4) 

Statement (2) follows immediately from (1), in view of (4). 

We prove (1) is true by using the fact that if t0 = 0 then the normalized 
fundamental matrix has Φ(0) = I. Letting Φ = eAt, we must show Φ� = 
AΦ and Φ(0) = I . 

The second of these follows from substituting t = 0 into the infinite 
series definition (3) for eAt . 

To show Φ� = AΦ, we assume that we can differentiate the series (3) 
term-by-term; then we have for the individual terms 

d tn tn−1 

dt 
An

n! 
= An · 

(n − 1)!
, 

since An is a constant matrix. Differentiating (3) term-by-term then gives 

dΦ d At A + A2t + . . . + An 
(n

tn

−
−

1
1 

)! + . . . 
(5)dt = dt e =


= A eAt = A Φ .


Calculation of eAt . 

The main use of the exponential matrix is in Theorem 3 — writing down 
explicitly the solution to an IVP. If eAt has to be calculated for a specific 
system, several techniques are available. 
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a) In simple cases, it can be calculated directly as an infinite series of 
matrices. 

b) It can always be calculated, according to Theorem 3, as the normal
ized fundamental matrix Φ� 0(t), using (11): Φ� 0(t) = Φ(t)Φ(0)−1. 

c) A third technique uses the exponential law 

e(B+C)t = eBteCt , valid if BC = CB. (6) 

To use it, one looks for constant matrices B and C such that 

A = B + C, BC = CB, eBt and eCt are computable; (7) 

then 
eAt = eB teC t . (8) 

2 1 1
Example 3C. Let A = . Solve x� = A x, x(0) = ,

0 2 2 
using eAt . 

2 0 0 1
Solution. We set B = and C = ; then (7) is 

0 2 0 0 
satisfied, and � �� � � � 

At e2t 0 1 t 2t 1 t e = 2t = e ,
0 e 0 1 0 1 

by (8) and Examples 3A and 3B. Therefore, by Theorem 3 (2), we get � �� � � � 
At 2t 1 t 1 2t 1 + 2t 

x = e x0 = e = e .
0 1 2 2 
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