
The Normalized Fundamental Matrix

In the previous note we saw two main facts about the fundamental ma-
trix:

Φ(t) =

(
x1
x2

)
=

(
x1 x2
y1 y2

)
. (1)

and
x = Φ 1(t)Φ(t0)

− x0 . (2)

Is there a “best” choice for fundamental matrix?

There are two common choices, each with its advantages. If the ODE
system has constant coefficients, and its eigenvalues are real and distinct,
then a natural choice for the fundamental matrix would be the one whose
columns are the normal modes — the solutions of the form

xi = ~αiełit , i = 1, 2.

There is another choice however which is suggested by (2) and which
is particularly useful in showing how the solution depends on the initial
conditions. Suppose we pick Φ(t) so that

Φ(t0) = I =

(
1 0

. (3)
0 1

)
Referring to the definition (1), this means the solutions x1 and x2 are picked
so

1 0
x1(t0) =

( )
, x2(t0) =

( )
. (3′)

0 1

Since the xi(t) are uniquely determined by these initial conditions, the
fundamental matrix Φ(t) satisfying (3) is also unique; we give it a name.

Definition 2 The unique matrix Φt0(t) satisfying

Φ′t = =
0

A Φt0 ,

˜
Φt0(t0) I (4)

is called the normalized

˜
fundamental

˜
matrix

˜
at t0 for A.

For convenience in use, the definition uses Theorem 1 to
guarantee Φ̃t0 will actually be a fundamental matrix. The
condition |Φ̃t0(t)| = 0 in Theorem 1 is satisfied, since the
definition implies |Φ̃t0(t0)| = 1.
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To keep the notation simple, we will assume in the rest of this section
that t0 = 0, as it almost always is; then Φ̃0 is the normalized fundamental
matrix. Since Φ̃0(0) = I, we get from (2) the matrix form for the solution to
the IVP: x′ = A(t) x, x(0) = x0 is

x(t) = Φ̃0(t)x0. (5)

Calculating Φ̃0. One way is to find the two solutions in (3′) and use
them as the columns of Φ̃0. This is fine if the two solutions can be deter-
mined by inspection.

If not, a simpler method is this: find any fundamental matrix Φ(t); then

Φ̃0(t) = Φ(t)Φ(0)−1. (6)

To verify this, we have to see that the matrix on the right of (6) satisfies the
two conditions in Definition 2. The second is trivial. The first is easy using
the rule for matrix differentiation:

If M = M(t) and B, C are constant matrices, then (BM)′ = BM′, (MC)′ = M′C,

from which we see that since Φ is a fundamental matrix,

Φ t Φ 0 −1 ′ Φ 1 1( ( ) ( ) ) = (t)′Φ(0)− = AΦ(t)Φ(0)− = A(Φ(t)Φ(0 1)− ),

showing that Φ(t)Φ(0)−1 also satisfies the first condition in Definition 2. �

0 1
Example 2A. Find the solution to the IVP: x′ =

(
−1 0

)
x , x(0) =

x0 .

Solution. Since the system is x′ = y, y′ = −x, we can find by inspection
the fundamental set of solutions satisfying (3′) :

x = cos t x = sin t
and .y = − sin t y = cos t

Thus by (5) the normalized fundamental matrix at 0 and solution to the
IVP is (˜ cos t sin t

)(
x cos

x = Φ x 0
0 = − sin t cos t y0

)
= x0

(
t

− sin t

)
+ y0

(
sin t
cos t

)
.

Example( 2B. Give the normalized fundamental matrix at 0 for x′ =
1 3
1 −1

)
x .
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Solution. This time the solutions (3′) cannot be obtained by inspection,
so we use the second method. You can easily find the eigenvalues and
eigenvectors for this system. Doing so produces the normal modes. Using
them as the columns of a fundamental matrix gives us

e
Φ t) =

(
3 2t

(
−e−2t

e2t .e−2t

)
Using (6) and the formula for calculating the inverse matrix we get

3
Φ(0) =

(
−1

1 1

)
1

, Φ 0)−1( =
4

(
1 1
−1 3

)
,

so that

1 3
Φ(t) =

4

(
e2t −e−2t

e2t e−2t

)(˜ 1 1
)

1
(

3e2t + e2t 3e2t 3e−2t
= 2t 2t 2t

−
2t

)
.−1 3 4 e − e− e + 3e−
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