Fundamental Matrices

In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. This is an elegant bookkeeping technique and a very compact, efficient way to express these formulas. As before, we state the definitions and results for a 2×2 system, but they generalize immediately to $n \times n$ systems.

We return to the system

$$
\begin{equation*}
\mathbf{x}^{\prime}=A(t) \mathbf{x} \tag{1}
\end{equation*}
$$

with the general solution

$$
\begin{equation*}
\mathbf{x}=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t), \tag{2}
\end{equation*}
$$

where \mathbf{x}_{1} and \mathbf{x}_{2} are two independent solutions to (1), and c_{1} and c_{2} are arbitrary constants.

We form the matrix whose columns are the solutions \mathbf{x}_{1} and \mathbf{x}_{2} :

$$
\Phi(t)=\binom{\mathbf{x}_{1}}{\mathbf{x}_{2}}=\left(\begin{array}{ll}
x_{1} & x_{2} \tag{3}\\
y_{1} & y_{2}
\end{array}\right) .
$$

Since the solutions are linearly independent, we called them a fundamental set of solutions, and therefore we call the matrix in (3) a fundamental matrix for the system (1).
Writing the general solution using $\Phi(t)$. As a first application of $\Phi(t)$, we can use it to write the general solution (2) efficiently. For according to (2), it is

$$
\mathbf{x}=c_{1}\binom{x_{1}}{y_{1}}+c_{2}\binom{x_{2}}{y_{2}}=\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)\binom{c_{1}}{c_{2}}
$$

which becomes using the fundamental matrix

$$
\begin{equation*}
\mathbf{x}=\Phi(t) \mathbf{c} \quad \text { where } \mathbf{c}=\binom{c_{1}}{c_{2}},(\text { general solution to }(1)) \tag{4}
\end{equation*}
$$

Note that the vector \mathbf{c} must be written on the right, even though the c^{\prime} s are usually written on the left when they are the coefficients of the solutions \mathbf{x}_{i}.

Solving the IVP using $\Phi(t)$. We can now write down the solution to the IVP

$$
\begin{equation*}
\mathbf{x}^{\prime}=A(t) \mathbf{x}, \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0} . \tag{5}
\end{equation*}
$$

Starting from the general solution (4), we have to choose the c so that the initial condition in (6) is satisfied. Substituting t_{0} into (5) gives us the matrix equation for c:

$$
\Phi\left(t_{0}\right) \mathbf{c}=\mathbf{x}_{0} .
$$

Since the determinant $\left|\Phi\left(t_{0}\right)\right|$ is the value at t_{0} of the Wronskian of \mathbf{x}_{1} and \mathbf{x}_{2}, it is non-zero since the two solutions are linearly independent (Theorem 3 in the note on the Wronskian). Therefore the inverse matrix exists and the matrix equation above can be solved for c:

$$
\mathbf{c}=\Phi\left(t_{0}\right)^{-1} \mathbf{x}_{0} .
$$

Using the above value of \mathbf{c} in (4), the solution to the IVP (1) can now be written

$$
\begin{equation*}
\mathbf{x}=\Phi(t) \Phi\left(t_{0}\right)^{-1} \mathbf{x}_{0} \tag{6}
\end{equation*}
$$

Note that when the solution is written in this form, it's "obvious" that $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$, i.e., that the initial condition in (5) is satisfied.
An equation for fundamental matrices We have been saying "a" rather than "the" fundamental matrix since the system (1) doesn't have a unique fundamental matrix: there are many ways to pick two independent solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$ to form the columns of Φ. It is therefore useful to have a way of recognizing a fundamental matrix when you see one. The following theorem is good for this; we'll need it shortly.
Theorem $1 \Phi(t)$ is a fundamental matrix for the system (1) if its determinant $|\Phi(t)|$ is non-zero and it satisfies the matrix equation

$$
\begin{equation*}
\Phi^{\prime}=A \Phi \tag{7}
\end{equation*}
$$

where Φ^{\prime} means that each entry of Φ has been differentiated.
Proof. Since $|\Phi| \not \equiv 0$, its columns \mathbf{x}_{1} and \mathbf{x}_{2} are linearly independent, as we saw in the previous note. Let $\Phi=\binom{\mathbf{x}_{1}}{\mathbf{x}_{2}}$. According to the rules for matrix multiplication (7) becomes

$$
\binom{\mathbf{x}_{1}^{\prime}}{\mathbf{x}_{2}^{\prime}}=A\binom{\mathbf{x}_{1}}{\mathbf{x}_{2}}=\binom{A \mathbf{x}_{1}}{A \mathbf{x}_{2}} .
$$

which shows that

$$
\mathbf{x}_{1}^{\prime}=A x_{1} \quad \text { and } \quad \mathbf{x}_{2}^{\prime}=A \mathbf{x}_{2}
$$

this last line says that \mathbf{x}_{1} and \mathbf{x}_{2} are solutions to the system (1).

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

