Existence and Uniqueness and Superposition in the General Case

We can extend the results above to the inhomogeneous case.

$$\mathbf{x}' = A(t)\mathbf{x}$$
 (homogeneous) (H)

$$\mathbf{x}' = A(t)\mathbf{x} + \mathbf{F}(t) \text{ (inhomogeneous),}$$
(I)

where F(t) is the *input* to the system.

Linearity/superposition:

1. If $\mathbf{x_1}$ and $\mathbf{x_2}$ are solutions to (H) then so is $\mathbf{x} = c_1 \mathbf{x_1} + c_2 \mathbf{x_2}$

2. If x_h is a solution to (H) and x_p is a solution to (I) then $x = x_h + x_p$ is also a solution to (I).

3. If $\mathbf{x_1}' = A\mathbf{x_1} + \mathbf{F_1}$, and $\mathbf{x_2}' = A\mathbf{x_2} + \mathbf{F_2}$ then $\mathbf{x} = \mathbf{x_1} + \mathbf{x_2}$ satisfies $\mathbf{x}' = A\mathbf{x} + \mathbf{F_1} + \mathbf{F_2}$. That is, superposition of inputs leads to superposition of outputs.

proof: 1.
$$\mathbf{x}' = c_1 \mathbf{x_1}' + c_2 \mathbf{x_2}' = c_1 A \mathbf{x_1} + c_2 A \mathbf{x_2} = A(c_1 \mathbf{x_1} + c_2 \mathbf{x_2}) = A \mathbf{x}.$$

2. $\mathbf{x}' = \mathbf{x_h}' + \mathbf{x_p}' = A \mathbf{x_h} + A \mathbf{x_p} + \mathbf{F} = A(\mathbf{x_h} + \mathbf{x_p}) + \mathbf{F} = A \mathbf{x} + \mathbf{F}.$

3. $\mathbf{x}' = \mathbf{x_1}' + \mathbf{x_2}' = A\mathbf{x_1} + \mathbf{F_1} + A\mathbf{x_2} + \mathbf{F_2} = A(\mathbf{x_1} + \mathbf{x_2}) + \mathbf{F_1} + \mathbf{F_2} = A\mathbf{x} + \mathbf{F_1} + \mathbf{F_2}.$

Existence and uniqueness: We start with an initial time t_0 and the initial value problem:

$$\mathbf{x}' = A(t)\mathbf{x} + \mathbf{F}(t), \ \mathbf{x}(t_0) = \mathbf{x_0}.$$
 (IVP)

Theorem: If A(t) and $\mathbf{F}(t)$ are continuous then there exists a unique solution to (IVP).

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.