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General Linear ODE Systems and Independent Solutions 

We have studied the homogeneous system of ODE’s with constant co
efficients, 

x� = A x , (1) 

where A is an n × n matrix of constants (n = 2, 3). We described how 
to calculate the eigenvalues and corresponding eigenvectors for the matrix 
A, and how to use them to find n independent solutions to the system (1). 

With this concrete experience in solving low-order systems with con
stant coefficients, what can be said when the coefficients are functions of 
the independent variable t? We can still write the linear system in the ma
trix form (1), but now the matrix entries will be functions of t: 

x� = a(t)x + b(t)y 
, 

x 
� 
= 

a(t) b(t) 
. 

x 
, (2)y� = c(t)x + d(t)y y c(t) d(t) y 

or in more abridged notation, valid for n × n linear homogeneous systems, 

x� = A(t) x . (3) 

Note how the matrix becomes a function of t — we call it a matrix-valued 
function of t, since to each value of t the function rule assigns a matrix: 

t0 A(t0) = 
a(t0) b(t0) → c(t0) d(t0) 

In the rest of this chapter we will often not write the variable t explicitly, 
but it is always understood that the matrix entries are functions of t. 

We will sometimes use n = 2 or 3 in the statements and examples in 
order to simplify the exposition, but the definitions, results, and the argu
ments which prove them are essentially the same for higher values of n. 

Definition 1 Solutions x1(t), . . . , xn(t) to (3) are called linearly dependent 
if there are constants ci, not all of which are 0, such that 

c1x1(t) + . . . + cnxn(t) = 0, for all t. (4) 

If there is no such relation, i.e., if 

c1x1(t) + . . . + cnxn(t) = 0 for all t all ci = 0, (5)⇒ 

the solutions are called linearly independent, or simply independent. 
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The phrase for all t is often in practice omitted, as being un
derstood. This can lead to ambiguity. To avoid it, we will 
use the symbol ≡ 0 for identically 0, meaning zero for all t; 
the symbol �≡ 0 means not identically 0, i.e., there is some 
t-value for which it is not zero. For example, (4) would be 
written 

c1x1(t) + . . . + cnxn(t) ≡ 0 . 

Theorem 1 If x1, . . . , xn is a linearly independent set of solutions to the 
n × n system x� = A(t)x, then the general solution to the system is 

x = c1x1 + . . . + cnxn.	 (6) 

Such a linearly independent set is called a fundamental set of solutions. 
This theorem is the reason for expending so much effort to 
find two independent solutions, when n = 2 and A is a 
constant matrix. In this chapter, the matrix A is not con
stant; nevertheless, (6) is still true. 

Proof. There are two things to prove: 

(a) All vector functions of the form (6) really are solutions to x� = A x. 

This is the superposition principle for solutions of the system; it’s true 
because the system is linear. The matrix notation makes it really easy to 
prove. We have 

(c1x1 + . . . + cnxn)�	 = c1x1
� + . . . + cnx�n 

= c1 A x1 + . . . + cn A xn, since xi
� = A xi ; 

= A (c1x1 + . . . + cnxn), by the distributive law. 

(b) All solutions to the system are of the form (6).


This is harder to prove and will be the main result of the next note.
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