General Linear ODE Systems and Independent Solutions

We have studied the homogeneous system of ODE's with constant coefficients,

$$
\begin{equation*}
\mathbf{x}^{\prime}=A \mathbf{x}, \tag{1}
\end{equation*}
$$

where A is an $n \times n$ matrix of constants $(n=2,3)$. We described how to calculate the eigenvalues and corresponding eigenvectors for the matrix A, and how to use them to find n independent solutions to the system (1).

With this concrete experience in solving low-order systems with constant coefficients, what can be said when the coefficients are functions of the independent variable t ? We can still write the linear system in the matrix form (1), but now the matrix entries will be functions of t :

$$
\begin{align*}
& x^{\prime}=a(t) x+b(t) y \tag{2}\\
& y^{\prime}=c(t) x+d(t) y
\end{align*}, \quad\binom{x}{y}^{\prime}=\left(\begin{array}{ll}
a(t) & b(t) \\
c(t) & d(t)
\end{array}\right) \cdot\binom{x}{y}
$$

or in more abridged notation, valid for $n \times n$ linear homogeneous systems,

$$
\begin{equation*}
\mathbf{x}^{\prime}=A(t) \mathbf{x} \tag{3}
\end{equation*}
$$

Note how the matrix becomes a function of t - we call it a matrix-valued function of t, since to each value of t the function rule assigns a matrix:

$$
t_{0} \rightarrow A\left(t_{0}\right)=\left(\begin{array}{ll}
a\left(t_{0}\right) & b\left(t_{0}\right) \\
c\left(t_{0}\right) & d\left(t_{0}\right)
\end{array}\right)
$$

In the rest of this chapter we will often not write the variable t explicitly, but it is always understood that the matrix entries are functions of t.

We will sometimes use $n=2$ or 3 in the statements and examples in order to simplify the exposition, but the definitions, results, and the arguments which prove them are essentially the same for higher values of n.
Definition 1 Solutions $\mathbf{x}_{1}(t), \ldots, \mathbf{x}_{n}(t)$ to (3) are called linearly dependent if there are constants c_{i}, not all of which are 0 , such that

$$
\begin{equation*}
c_{1} \mathbf{x}_{1}(t)+\ldots+c_{n} \mathbf{x}_{n}(t)=0, \quad \text { for all } t \tag{4}
\end{equation*}
$$

If there is no such relation, i.e., if

$$
\begin{equation*}
c_{1} \mathbf{x}_{1}(t)+\ldots+c_{n} \mathbf{x}_{n}(t)=0 \quad \text { for all } t \quad \Rightarrow \quad \text { all } c_{i}=0 \tag{5}
\end{equation*}
$$

the solutions are called linearly independent, or simply independent.

The phrase for all t is often in practice omitted, as being understood. This can lead to ambiguity. To avoid it, we will use the symbol $\equiv 0$ for identically $\mathbf{0}$, meaning zero for all t; the symbol $\not \equiv 0$ means not identically 0 , i.e., there is some t-value for which it is not zero. For example, (4) would be written

$$
c_{1} \mathbf{x}_{1}(t)+\ldots+c_{n} \mathbf{x}_{n}(t) \equiv 0 .
$$

Theorem 1 If $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ is a linearly independent set of solutions to the $n \times n$ system $\boldsymbol{x}^{\prime}=A(t) \boldsymbol{x}$, then the general solution to the system is

$$
\begin{equation*}
\boldsymbol{x}=c_{1} \mathbf{x}_{1}+\ldots+c_{n} \mathbf{x}_{n} \tag{6}
\end{equation*}
$$

Such a linearly independent set is called a fundamental set of solutions.
This theorem is the reason for expending so much effort to find two independent solutions, when $n=2$ and A is a constant matrix. In this chapter, the matrix A is not constant; nevertheless, (6) is still true.
Proof. There are two things to prove:
(a) All vector functions of the form (6) really are solutions to $\mathbf{x}^{\prime}=A \mathbf{x}$.

This is the superposition principle for solutions of the system; it's true because the system is linear. The matrix notation makes it really easy to prove. We have

$$
\begin{aligned}
\left(c_{1} \mathbf{x}_{1}+\ldots+c_{n} \mathbf{x}_{n}\right)^{\prime} & =c_{1} \mathbf{x}_{1}^{\prime}+\ldots+c_{n} \mathbf{x}_{n}^{\prime} & & \\
& =c_{1} A \mathbf{x}_{1}+\ldots+c_{n} A \mathbf{x}_{n}, & & \text { since } \mathbf{x}_{i}^{\prime}=A \mathbf{x}_{i} ; \\
& =A\left(c_{1} \mathbf{x}_{1}+\ldots+c_{n} \mathbf{x}_{n}\right), & & \text { by the distributive law. }
\end{aligned}
$$

(b) All solutions to the system are of the form (6).

This is harder to prove and will be the main result of the next note.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

