18.03SC Practice Problems 35

Matrix exponentials

The equation $\dot{\mathbf{u}}=A \mathbf{u}$ (or the matrix A) is
"stable" if all solutions tend to $\mathbf{0}$ as $t \rightarrow \infty$.
"unstable" if most solutions grow without bound as $t \rightarrow \infty$.
"neutrally stable" otherwise.
A fundamental matrix for a square matrix A is a matrix of functions, $\Phi(t)$, whose columns are linearly independent solutions to $\dot{\mathbf{u}}=A \mathbf{u}$.

The fundamental matrix whose value at $t=0$ is the identity matrix is the matrix exponential $e^{A t}$. It can be computed from any fundamental matrix $\Phi(t)$:

$$
e^{A t}=\Phi(t) \Phi(0)^{-1}
$$

The solution to $\dot{\mathbf{u}}=A \mathbf{u}$ with initial condition $\mathbf{u}(0)$ is given by $e^{A t} \mathbf{u}(0)$.
If \mathbf{q} is constant, and A is invertible, then $\mathbf{u}_{\mathbf{p}}(t)=-A^{-1} \mathbf{q}$ is a solution to the inhomogeneous equation $\dot{\mathbf{u}}=A \mathbf{u}+\mathbf{q}$. The general solution is $\mathbf{u}_{\mathbf{p}}+\mathbf{u}_{\mathbf{h}}$, where $\mathbf{u}_{\mathbf{h}}$ is the general solution of the associated homogeneous equation $\dot{\mathbf{u}}=A \mathbf{u}$.

1. In this problem, $A=\left[\begin{array}{cc}1 & 1 \\ -4 & 1\end{array}\right]$ and we are interested in the equation $\dot{\mathbf{u}}=A \mathbf{u}$.
(a) Find a fundamental matrix $\Phi(t)$ for A.
(b) Find the exponential matrix $e^{A t}$.
(c) Find the solution to $\dot{\mathbf{u}}=A \mathbf{u}$ with $\mathbf{u}(0)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
(d) Find a solution to $\dot{\mathbf{u}}=A \mathbf{u}+\left[\begin{array}{c}5 \\ 10\end{array}\right]$. What is the general solution? What is the solution with $\mathbf{u}(0)=\mathbf{0}$?
2. Suppose $\mathbf{u}_{\mathbf{1}}(t)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ (the constant trajectory) and $\mathbf{u}_{\mathbf{2}}(t)=\left[\begin{array}{c}e^{t} \\ -e^{t}\end{array}\right]$ are solutions to the equation $\dot{\mathbf{u}}=B \mathbf{u}$ for some matrix B.
(a) What is the general solution? What is the solution $\mathbf{u}(t)$ with $\mathbf{u}(0)=\left[\begin{array}{l}2 \\ 2\end{array}\right]$?

What is the solution with $\mathbf{u}(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$?
(b) Find a fundamental matrix, and compute the exponential $e^{B t}$. What is e^{B} ?
(c) What are the eigenvalues and eigenvectors of B ?
(d) What is B ?

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

