Part I Problems and Solutions

In the following two problems, find a fundamental matrix of the given system and then use it to find the specific solution of the system which satisfies the given initial condition.

Problem 1: $\quad \mathbf{x}^{\prime}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right] \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{c}3 \\ -2\end{array}\right]$
Solution: We use the formula

$$
\mathbf{x}(t)=\Phi(t) \Phi(0)^{-1} \mathbf{x}_{0}
$$

where $\Phi(t)$ is a fundamental matrix for the homogeneous system $\mathbf{x}^{\prime}=\mathbf{A x}$, to find the solution vector $\mathbf{x}(t)$ that satisfies the initial condition $\mathbf{x}(0)=\mathbf{x}_{0}$.
The answer is $\Phi(t)=\left[\begin{array}{cc}e^{t} & e^{3 t} \\ -e^{t} & e^{3 t}\end{array}\right]$, and

$$
\mathbf{x}(t)=\frac{1}{2}\left[\begin{array}{c}
5 e^{t}+e^{3 t} \\
-5 e^{t}=e^{3 t}
\end{array}\right]
$$

Problem 2: $\quad \mathbf{x}^{\prime}=\left[\begin{array}{ll}2 & -5 \\ 4 & -2\end{array}\right], \quad \mathbf{x}(0)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
Solution: We again use the formula

$$
\mathbf{x}(t)=\Phi(t) \Phi(0)^{-1} \mathbf{x}_{0}
$$

where Φ is a fundamental matrix for the homogeneous system $\mathbf{x}^{\prime}=\mathbf{A x}$, to find the solution vector $\mathbf{x}(t)$ that satisfies the initial condition $\mathbf{x}(0)=\mathbf{x}_{0}$.
The answer is $\Phi(t)=\left[\begin{array}{cc}5 \cos 4 t & -5 \sin 4 t \\ 2 \cos 4 t+4 \sin 4 t & 4 \cos 4 t-2 \sin 4 t\end{array}\right]$, and

$$
\mathbf{x}(t)=\frac{1}{4}\left[\begin{array}{c}
-5 \sin 4 t \\
4 \cos 4 t-2 \sin 4 t
\end{array}\right]
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

