Part II Problems and Solutions

Problem 1: [Exponential matrix]

(a) We have seen that a complex number $z=a+b i$ determines a matrix $A(z)$ in the following way: $A(a+b i)=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$. This matrix represents the operation of multiplication by z, in the sense that if $z(x+y i)=v+$ wi then $A(z)\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}v \\ w\end{array}\right]$. What is $e^{A(z) t}$? What is $A\left(e^{z t}\right)$?
(b) Say that a pair of solutions $x_{1}(t), x_{2}(t)$ of the equation $m \ddot{x}+b \dot{x}+k x=0$ is normalized at $t=0$ if:

$$
\begin{array}{ll}
x_{1}(0)=1, & \dot{x}_{1}(0)=0 \\
x_{2}(0)=0, & \dot{x}_{2}(0)=1
\end{array}
$$

For example, find the normalized pair of solutions to $\ddot{x}+2 \dot{x}+2 x=0$. Then find $e^{A t}$ where A is the companion matrix for the operator $D^{2}+2 D+2 I$.
(c) Suppose that $e^{3 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $e^{2 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]$ satisfy the equation $\dot{\mathbf{u}}=A \mathbf{u}$.
(i) Find solutions $\mathbf{u}_{1}(t)$ and $\mathbf{u}_{2}(t)$ such that $\mathbf{u}_{1}(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{u}_{\mathbf{2}}(0)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
(ii) Find $e^{A t}$.
(iii) Find A.

Solution: (a) With $A=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right], p_{A}(\lambda)=\lambda^{2}-2 a \lambda+\left(a^{2}+b^{2}\right)=(\lambda-a)^{2}+b^{2}$, so the eigenvalues are $a \pm b i$. An eigenvector for $\lambda_{1}=a+b i$ is given by $\mathbf{v}_{\mathbf{1}}$ such that $\left[\begin{array}{cc}-b i & -b \\ b & -b i\end{array}\right] \mathbf{v}_{\mathbf{1}}=\mathbf{0}$, and we can take $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}1 \\ -i\end{array}\right]$. The corresponding normal mode is $e^{(a+b i) t}\left[\begin{array}{c}1 \\ -i\end{array}\right]$. Its real and imaginary parts give linearly independent real solutions, $e^{a t}\left[\begin{array}{c}\cos (b t) \\ \sin (b t)\end{array}\right]$ and $e^{a t}\left[\begin{array}{c}\sin (b t) \\ \cos (b t)\end{array}\right]$. So a fundamental matrix is given by $\Phi(t)=e^{a t}\left[\begin{array}{cc}\cos (b t) & \sin (b t) \\ \sin (b t) & -\cos (b t)\end{array}\right]$. $\Phi(0)=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \Phi(0)^{-1}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$, so $e^{A t}=\Phi(t) \Phi(0)^{-1}=e^{a t}\left[\begin{array}{cc}\cos (b t) & -\sin (b t) \\ \sin (b t) & \cos (b t)\end{array}\right]$. $A\left(e^{(a+b i) t}\right)=A\left(e^{a t}(\cos (b t)+i \sin (b t))\right)=e^{a t}\left[\begin{array}{cc}\cos (b t) & -\sin (b t) \\ \sin (b t) & \cos (b t)\end{array}\right]=e^{A(a+b i) t}$.
(b) $s^{2}+2 s+2=(s+1)^{2}+1$ so the roots of the characteristic polynomial are $-1 \pm i$. Basic solutions are given by $y_{1}=e^{-t} \cos (t)$ and $y_{2}=e^{-t} \sin (t)$. (I write y instead of x because the problem wrote x for the normalized solutions.) $y_{1}(0)=1, \dot{y}_{1}(0)=-1$, $y_{2}(0)=0, \dot{y}_{2}(0)=1$. So $x_{1}=y_{1}+y_{2}$ and $x_{2}=y_{2}$ form a normalized pair of solutions: $x_{1}(t)=e^{-t}(\cos t+\sin t), x_{2}(t)=e^{-t} \sin t$.
The companion matrix is $A=\left[\begin{array}{cc}0 & 1 \\ -2 & -2\end{array}\right]$. Its characteristic polynomial is the same, $\lambda^{2}+2 \lambda+2$, so its eigenvalues are the same, $-1 \pm i$. An eigenvector for value $-1+i$ is given by $\mathbf{v}_{\mathbf{1}}$ such that $\left[\begin{array}{cc}1-i & 1 \\ -2 & -1-i\end{array}\right] \mathbf{v}_{\mathbf{1}}=\mathbf{0}$. We can take $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}1 \\ -1+i\end{array}\right]$. The corresponding normal mode is $e^{(-1+i) t}\left[\begin{array}{c}1 \\ -1+i\end{array}\right]$, which has real and imaginary parts $\mathbf{u}_{1}=e^{-t}\left[\begin{array}{c}\cos t \\ -\cos t-\sin t\end{array}\right]$ and $\mathbf{u}_{2}=e^{-t}\left[\begin{array}{c}\sin t \\ -\sin t+\cos t\end{array}\right] . \Phi(t)=\left[\begin{array}{ll}\mathbf{u}_{1} & \mathbf{u}_{2}\end{array}\right]$ has $\Phi(0)=$ $\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right] \cdot \Phi(0)^{-1}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$, so $e^{A t}=\Phi(t) \Phi(0)^{-1}=e^{-t}\left[\begin{array}{cc}\cos t+\sin t & \sin t \\ -2 \sin t & -\sin t+\cos t\end{array}\right]$. The top entries coincide with x_{1} and x_{2} computed above.
(c) (i) $\mathbf{u}_{1}=c_{1} e^{3 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]$ so $\left[\begin{array}{l}1 \\ 0\end{array}\right]=\mathbf{u}_{1}(0)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{c}c_{1}+c_{2} \\ c_{1}+2 c_{2}\end{array}\right]$. Thus $c_{1}=2$ and $c_{2}=-1: \mathbf{u}_{1}=\left[\begin{array}{c}2 e^{3 t}-e^{2 t} \\ 2 e^{3 t}-2 e^{2 t}\end{array}\right]$. Start again for $\mathbf{u}_{2}: \mathbf{u}_{2}=c_{1} e^{3 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]+$ $c_{2} e^{2 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]$ so $\left[\begin{array}{l}0 \\ 1\end{array}\right]=\mathbf{u}_{2}(0)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{c}c_{1}+c_{2} \\ c_{1}+2 c_{2}\end{array}\right]$. Thus $c_{1}=-1$ and $c_{2}=1: \mathbf{u}_{2}=\left[\begin{array}{c}-e^{3 t}+e^{2 t} \\ -e^{3 t}+2 e^{2 t}\end{array}\right]$.
(ii) We have just computed the columns of the exponential matrix:
$e^{A t}=\left[\begin{array}{cc}2 e^{3 t}-e^{2 t} & -e^{3 t}+e^{2 t} \\ 2 e^{3 t}-2 e^{2 t} & -e^{3 t}+2 e^{2 t}\end{array}\right]$.
(iii) The matrix A has eigenvalues 3 and 2, with eigenvectors $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2\end{array}\right]$. The $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=$ $3\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=2\left[\begin{array}{l}1 \\ 2\end{array}\right]$. The top entries give the equations $a+b=3$ and $a+2 b=2$, which imply $a=4, b=-1$. The bottom entries give the equations $c+d=3$, $c+2 d=4$, which imply $c=2, d=1$. Thus $A=\left[\begin{array}{cc}4 & -1 \\ 2 & 1\end{array}\right]$.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

