Part II Problems and Solutions

Problem 1: [Exponential matrix]

(a) We have seen that a complex number z = a + bi determines a matrix A(z) in the following way: $A(a + bi) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$. This matrix represents the operation of multiplication by z, in the sense that if z(x + yi) = v + wi then $A(z) \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} v \\ w \end{bmatrix}$. What is $e^{A(z)t}$? What is $A(e^{zt})$?

(b) Say that a pair of solutions $x_1(t)$, $x_2(t)$ of the equation $m\ddot{x} + b\dot{x} + kx = 0$ is normalized at t = 0 if:

$$x_1(0) = 1$$
, $\dot{x}_1(0) = 0$
 $x_2(0) = 0$, $\dot{x}_2(0) = 1$

For example, find the normalized pair of solutions to $\ddot{x} + 2\dot{x} + 2x = 0$. Then find e^{At} where *A* is the companion matrix for the operator $D^2 + 2D + 2I$.

(c) Suppose that
$$e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $e^{2t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ satisfy the equation $\dot{\mathbf{u}} = A\mathbf{u}$.
(i) Find solutions $\mathbf{u}_1(t)$ and $\mathbf{u}_2(t)$ such that $\mathbf{u}_1(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{u}_2(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
(ii) Find e^{At} .
(iii) Find A.

Solution: (a) With $A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, $p_A(\lambda) = \lambda^2 - 2a\lambda + (a^2 + b^2) = (\lambda - a)^2 + b^2$, so the eigenvalues are $a \pm bi$. An eigenvector for $\lambda_1 = a + bi$ is given by \mathbf{v}_1 such that $\begin{bmatrix} -bi & -b \\ b & -bi \end{bmatrix} \mathbf{v}_1 = \mathbf{0}$, and we can take $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -i \end{bmatrix}$. The corresponding normal mode is $e^{(a+bi)t} \begin{bmatrix} 1 \\ -i \end{bmatrix}$. Its real and imaginary parts give linearly independent real solutions, $e^{at} \begin{bmatrix} \cos(bt) \\ \sin(bt) \end{bmatrix}$ and $e^{at} \begin{bmatrix} \sin(bt) \\ \cos(bt) \end{bmatrix}$. So a fundamental matrix is given by $\Phi(t) = e^{at} \begin{bmatrix} \cos(bt) & \sin(bt) \\ \sin(bt) & -\cos(bt) \end{bmatrix}$. $\Phi(0) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $\Phi(0)^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, so $e^{At} = \Phi(t)\Phi(0)^{-1} = e^{at} \begin{bmatrix} \cos(bt) & -\sin(bt) \\ \sin(bt) & \cos(bt) \end{bmatrix}$. $A(e^{(a+bi)t}) = A(e^{at}(\cos(bt) + i\sin(bt))) = e^{at} \begin{bmatrix} \cos(bt) & -\sin(bt) \\ \sin(bt) & \cos(bt) \end{bmatrix} = e^{A(a+bi)t}$. **(b)** $s^2 + 2s + 2 = (s+1)^2 + 1$ so the roots of the characteristic polynomial are $-1 \pm i$. Basic solutions are given by $y_1 = e^{-t}\cos(t)$ and $y_2 = e^{-t}\sin(t)$. (I write *y* instead of *x* because the problem wrote *x* for the normalized solutions.) $y_1(0) = 1$, $\dot{y}_1(0) = -1$, $y_2(0) = 0$, $\dot{y}_2(0) = 1$. So $x_1 = y_1 + y_2$ and $x_2 = y_2$ form a normalized pair of solutions: $x_1(t) = e^{-t}(\cos t + \sin t)$, $x_2(t) = e^{-t}\sin t$.

The companion matrix is $A = \begin{bmatrix} 0 & 1 \\ -2 & -2 \end{bmatrix}$. Its characteristic polynomial is the same, $\lambda^2 + 2\lambda + 2$, so its eigenvalues are the same, $-1 \pm i$. An eigenvector for value -1 + iis given by \mathbf{v}_1 such that $\begin{bmatrix} 1-i & 1 \\ -2 & -1-i \end{bmatrix} \mathbf{v}_1 = \mathbf{0}$. We can take $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1+i \end{bmatrix}$. The corresponding normal mode is $e^{(-1+i)t} \begin{bmatrix} 1 \\ -1+i \end{bmatrix}$, which has real and imaginary parts $\mathbf{u}_1 = e^{-t} \begin{bmatrix} \cos t \\ -\cos t - \sin t \end{bmatrix}$ and $\mathbf{u}_2 = e^{-t} \begin{bmatrix} \sin t \\ -\sin t + \cos t \end{bmatrix}$. $\Phi(t) = [\mathbf{u}_1 \quad \mathbf{u}_2]$ has $\Phi(0) = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$. $\Phi(0)^{-1} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, so $e^{At} = \Phi(t)\Phi(0)^{-1} = e^{-t} \begin{bmatrix} \cos t + \sin t & \sin t \\ -2\sin t & -\sin t + \cos t \end{bmatrix}$. The top entries coincide with x_1 and x_2 computed above. (c) (i) $\mathbf{u}_1 = c_1 e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ so $\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \mathbf{u}_1(0) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} c_1 + c_2 \\ c_1 + 2c_2 \end{bmatrix}$. Thus $c_1 = 2$ and $c_2 = -1$: $\mathbf{u}_1 = \begin{bmatrix} 2e^{3t} - e^{2t} \\ 2e^{3t} - 2e^{2t} \end{bmatrix}$. Start again for \mathbf{u}_2 : $\mathbf{u}_2 = c_1 e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ so $\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \mathbf{u}_2(0) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} c_1 + c_2 \\ c_1 + 2c_2 \end{bmatrix}$. Thus $c_1 = -1$ and $c_2 = 1$: $\mathbf{u}_2 = \begin{bmatrix} -e^{3t} + e^{2t} \\ -e^{3t} + 2e^{2t} \end{bmatrix}$.

(ii) We have just computed the columns of the exponential matrix:

$$e^{At} = \begin{bmatrix} 2e^{3t} - e^{2t} & -e^{3t} + e^{2t} \\ 2e^{3t} - 2e^{2t} & -e^{3t} + 2e^{2t} \end{bmatrix}$$

(iii) The matrix *A* has eigenvalues 3 and 2, with eigenvectors $\begin{bmatrix} 1\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\2 \end{bmatrix}$. The $\begin{bmatrix} a & b\\c & d \end{bmatrix} \begin{bmatrix} 1\\1 \end{bmatrix} = 3\begin{bmatrix} 1\\2 \end{bmatrix}$ and $\begin{bmatrix} a & b\\c & d \end{bmatrix} \begin{bmatrix} 1\\2 \end{bmatrix} = 2\begin{bmatrix} 1\\2 \end{bmatrix}$. The top entries give the equations a + b = 3 and a + 2b = 2, which imply a = 4, b = -1. The bottom entries give the equations c + d = 3, c + 2d = 4, which imply c = 2, d = 1. Thus $A = \begin{bmatrix} 4 & -1\\2 & 1 \end{bmatrix}$.

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.