Part II Problems

Problem 1: [Exponential matrix]
(a) We have seen that a complex number $z=a+b i$ determines a matrix $A(z)$ in the following way: $A(a+b i)=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$. This matrix represents the operation of multiplication by z, in the sense that if $z(x+y i)=v+w i$ then $A(z)\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}v \\ w\end{array}\right]$. What is $e^{A(z) t}$? What is $A\left(e^{z t}\right)$?
(b) Say that a pair of solutions $x_{1}(t), x_{2}(t)$ of the equation $m \ddot{x}+b \dot{x}+k x=0$ is normalized at $t=0$ if:

$$
\begin{array}{ll}
x_{1}(0)=1, & \dot{x}_{1}(0)=0 \\
x_{2}(0)=0, & \dot{x}_{2}(0)=1
\end{array}
$$

For example, find the normalized pair of solutions to $\ddot{x}+2 \dot{x}+2 x=0$. Then find $e^{A t}$ where A is the companion matrix for the operator $D^{2}+2 D+2 I$.
(c) Suppose that $e^{3 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $e^{2 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]$ satisfy the equation $\dot{\mathbf{u}}=A \mathbf{u}$.
(i) Find solutions $\mathbf{u}_{1}(t)$ and $\mathbf{u}_{2}(t)$ such that $\mathbf{u}_{1}(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{u}_{2}(0)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
(ii) Find $e^{A t}$.
(iii) Find A.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

