Orthogonality Relations

We now explain the basic reason why the remarkable Fourier coefficent formulas work. We begin by repeating them from the last note:

$$
\begin{align*}
& a_{0}=\frac{1}{L} \int_{-L}^{L} f(t) d t \\
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(t) \cos \left(n \frac{\pi}{L} t\right) d t, \tag{1}\\
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(t) \sin \left(n \frac{\pi}{L} t\right) d t .
\end{align*}
$$

The key fact is the following collection of integral formulas for sines and cosines, which go by the name of orthogonality relations:

$$
\begin{aligned}
& \frac{1}{L} \int_{-L}^{L} \cos \left(n \frac{\pi}{L} t\right) \cos \left(m \frac{\pi}{L} t\right) d t= \begin{cases}1 & n=m \neq 0 \\
0 & n \neq m \\
2 & n=m=0\end{cases} \\
& \frac{1}{L} \int_{-L}^{L} \cos \left(n \frac{\pi}{L} t\right) \sin \left(m \frac{\pi}{L} t\right) d t=0 \\
& \frac{1}{L} \int_{-L}^{L} \sin \left(n \frac{\pi}{L} t\right) \sin \left(m \frac{\pi}{L} t\right) d t= \begin{cases}1 & n=m \neq 0 \\
0 & n \neq m\end{cases}
\end{aligned}
$$

Proof of the orthogonality relations: This is just a straightforward calculation using the periodicity of sine and cosine and either (or both) of these two methods:
Method 1: use $\cos a t=\frac{e^{i a t}+e^{-i a t}}{2}$, and $\sin a t=\frac{e^{i a t}-e^{-i a t}}{2 i}$.
Method 2: use the trig identity $\cos (\alpha) \cos (\beta)=\frac{1}{2}(\cos (\alpha+\beta)+\cos (\alpha-\beta))$, and the similar trig identies for $\cos (\alpha) \sin (\beta)$ and $\sin (\alpha) \sin (\beta)$.
Using the orthogonality relations to prove the Fourier coefficient formula Suppose we know that a periodic function $f(t)$ has a Fourier series expansion

$$
\begin{equation*}
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \frac{\pi}{L} t\right)+b_{n} \sin \left(n \frac{\pi}{L} t\right) \tag{2}
\end{equation*}
$$

How can we find the values of the coefficients? Let's choose one coefficient, say a_{2}, and compute it; you will easily how to generalize this to any other coefficient. The claim is that the right-hand side of the Fourier coefficient formula (1), namely the integral

$$
\frac{1}{L} \int_{-L}^{L} f(t) \cos \left(2 \frac{\pi}{L} t\right) d t
$$

is in fact the coefficent a_{2} in the series (2). We can replace $f(t)$ in this integral by the series in (2) and multiply through by $\cos \left(2 \frac{\pi}{L} t\right)$, to get

$$
\frac{1}{L} \int_{-L}^{L} \frac{a_{0}}{2} \cos \left(2 \frac{\pi}{L} t\right)+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(n \frac{\pi}{L} t\right) \cos \left(2 \frac{\pi}{L} t\right)+b_{n} \sin \left(n \frac{\pi}{L} t\right) \cos \left(2 \frac{\pi}{L} t\right)\right) d t
$$

Now the orthogonality relations tell us that almost every term in this sum will integrate to 0 . In fact, the only non-zero term is the $n=2$ cosine term

$$
\frac{1}{L} \int_{-L}^{L} a_{2} \cos \left(2 \frac{\pi}{L} t\right) \cos \left(2 \frac{\pi}{L} t\right) d t
$$

and the orthogonality relations for the case $n=m=2$ show this integral is equal to a_{2} as claimed.
Why the denominator of 2 in $\frac{a_{0}}{2}$?
Answer: it is in fact just a convention, but the one which allows us to have the same Fourier coefficent formula for a_{n} when $n=0$ and $n \geq 1$. (Notice that in the $n=m$ case for cosine, there is a factor of 2 only for $n=m=0$.)
Interpretation of the constant term $\frac{a_{0}}{2}$.
We can also interpret the constant term $\frac{a_{0}}{2}$ in the Fourier series of $f(t)$ as the average of the function $f(t)$ over one full period: $\quad \frac{a_{0}}{2}=\frac{1}{2 L} \int_{-L}^{L} f(t) d t$.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

