18.03SC Unit 3 Exam

1. A certain periodic function has Fourier series

$$
f(t)=1+\frac{\cos (\pi t)}{2}+\frac{\cos (2 \pi t)}{4}+\frac{\cos (3 \pi t)}{8}+\frac{\cos (4 \pi t)}{16}+\cdots
$$

(a) What is the minimal period of $f(t)$?
(b) Is $f(t)$ even, odd, neither, or both?
(c) Please give the Fourier series of a periodic solution (if one exists) of

$$
\ddot{x}+\omega_{n}^{2} x=f(t)
$$

(d) For what values of ω_{n} is there no periodic solution?
2. Let $f(t)=(u(t+1)-u(t-1)) t$.
(a) Sketch a graph of $f(t)$.
(b) Sketch a graph of the generalized derivative $f^{\prime}(t)$.
[6]
(c) Write a formula for the generalized derivative $f^{\prime}(t)$.
3. Let $p(D)$ be the operator whose unit impulse response is given by $w(t)=e^{-t}-e^{-3 t}$.
(a) Using convolution, find the unit step response of this operator: the solution to $p(D) v=$ [10] $u(t)$ with rest initial conditions.
(b) What is the transfer function $W(s)$ of the operator $p(D)$?
(c) What is the characteristic polynomial $p(s)$?

4 (a) Find a generalized function $f(t)$ with Laplace transform $F(s)=\frac{e^{-s}(s-1)}{s}$.
(b) Find a function $f(t)$ with Laplace transform $F(s)=\frac{s+10}{s^{3}+2 s^{2}+10 s}$.
5. Let $W(s)=\frac{s+10}{s^{3}+2 s^{2}+10 s}$.
(a) Sketch the pole diagram of $W(s)$.
(b) If $W(s)$ is the transfer function of an LTI system, what is the Laplace transform of the [10] response from rest initial conditions to the input $\sin (2 t)$?

Properties of the Laplace transform

0. Definition: $\quad \mathcal{L}[f(t)]=F(s)=\int_{0^{-}}^{\infty} f(t) e^{-s t} d t \quad$ for $\operatorname{Re} s \gg 0$.
1. Linearity: $\quad \mathcal{L}[a f(t)+b g(t)]=a F(s)+b G(s)$.
2. Inverse transform: $\quad F(s)$ essentially determines $f(t)$.
3. s-shift rule: $\quad \mathcal{L}\left[e^{a t} f(t)\right]=F(s-a)$.
4. t-shift rule: $\quad \mathcal{L}\left[f_{a}(t)\right]=e^{-a s} F(s), \quad f_{a}(t)=u(t-a) f(t-a)=\left\{\begin{array}{ll}f(t-a) & \text { if } t>a \\ 0 & \text { if } t<a\end{array}\right.$.
5. s-derivative rule: $\quad \mathcal{L}[t f(t)]=-F^{\prime}(s)$.
6. t-derivative rule: $\quad \mathcal{L}\left[f^{\prime}(t)\right]=s F(s)-f\left(0^{-}\right)$, where $f^{\prime}(t)$ denotes the generalized derivative.
7. Convolution rule: $\quad \mathcal{L}[f(t) * g(t)]=F(s) G(s), f(t) * g(t)=\int_{0^{-}}^{t^{+}} f(t-\tau) g(\tau) d \tau$.
8. Weight function: $\quad \mathcal{L}[w(t)]=W(s)=1 / p(s), w(t)$ the unit impulse response.

Formulas for the Laplace transform

$$
\begin{array}{lll}
\mathcal{L}[1]=\frac{1}{s} & \mathcal{L}\left[e^{a t}\right]=\frac{1}{s-a} & \mathcal{L}\left[t^{n}\right]=\frac{n!}{s^{n+1}} \\
\mathcal{L}[\cos (\omega t)]=\frac{s}{s^{2}+\omega^{2}} & \mathcal{L}[\sin (\omega t)]=\frac{\omega}{s^{2}+\omega^{2}} & \\
\mathcal{L}[t \cos (\omega t)]=\frac{2 \omega s}{\left(s^{2}+\omega^{2}\right)^{2}} & \mathcal{L}[t \sin (\omega t)]=\frac{s^{2}-\omega^{2}}{\left(s^{2}+\omega^{2}\right)^{2}} &
\end{array}
$$

Fourier coefficients for periodic functions of period 2π :

$$
\begin{gathered}
f(t)=\frac{a_{0}}{2}+a_{1} \cos (t)+a_{2} \cos (2 t)+\cdots+b_{1} \sin (t)+b_{2} \sin (2 t)+\cdots \\
a_{m}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos (m t) d t, \quad b_{m}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin (m t) d t
\end{gathered}
$$

If $\mathrm{sq}(t)$ is the odd function of period 2π which has value 1 between 0 and π, then

$$
\mathrm{sq}(t)=\frac{4}{\pi}\left(\sin (t)+\frac{\sin (3 t)}{3}+\frac{\sin (5 t)}{5}+\cdots\right)
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

