Part II Problems and Solutions

Problem 1: [Convolution]

(a) Let $q(t)=\cos (\omega t)$. Compute $w(t) * q(t)$ (where $w(t)$ is the unit impulse response for $D+k I$ and verify that it is the solution to $\dot{x}+k x=q(t)$ with rest initial conditions.
(b) Let $q(t)=1$. Compute $w(t) * q(t)$ (where $w(t)$ is the unit impulse response for $D^{2}+\omega_{0}^{2} I$ and verify that it is the solution to $\ddot{x}+\omega_{0}^{2} x=q(t)$ with rest initial conditions.
(c) Compute $t^{2} * t$ and $t * t^{2}$. Are they equal?
(d) Compute $(t * t) * t$ and $t *(t * t)$. Are they equal?

Solution: (a) We found $w(t)$ in an earlier part I problem: $w(t)=e^{-k t}$.
$x(t)=w(t) * q(t)=\int_{0}^{t} w(t-\tau) q(\tau) d \tau=\int_{0}^{t} e^{-k(t-\tau)} \cos (\omega \tau) d \tau$
$=e^{-k t} \int_{0}^{t} \operatorname{Re}\left(e^{(k+i \omega) \tau}\right) d \tau=e^{-k t} \operatorname{Re} \frac{e^{(k+i \omega) t}-1}{k+i \omega}=$
$\frac{1}{k^{2}+\omega^{2}} \operatorname{Re}\left((k-i \omega)\left(\left(\cos (\omega t)-e^{-k t}\right)+i \sin (\omega t)\right)=\frac{1}{k^{2}+\omega^{2}}\left(k \cos (\omega t)+\omega \sin (\omega t)-k e^{-k t}\right)\right.$.
Then $\dot{x}=\frac{1}{k^{2}+\omega^{2}}\left(-k \omega \sin (\omega t)+\omega^{2} \cos (\omega t)+k^{2} e^{-k t}\right)$, and indeed $\dot{x}+k x=\cos (\omega t)$. Also, $x(0)=0$: the convolution chose the transient just right.
(b) We found $w(t)$ in an earlier part I problem: $w(t)=\frac{1}{\omega_{0}} \sin \left(\omega_{0} t\right)$.
$x(t)=w(t) * q(t)=\int_{0}^{t} w(t-\tau) q(\tau) d \tau=\frac{1}{\omega_{0}} \int_{0}^{t} \sin \left(\omega_{0}(t-\tau)\right) d \tau$
$=\left.\frac{1}{\omega_{0}^{2}} \cos \left(\omega_{0}(t-\tau)\right)\right|_{0} ^{t}=\frac{1}{\omega_{0}^{2}}\left(1-\cos \left(\omega_{0} t\right)\right)$. Then $\dot{x}=\frac{1}{\omega_{0}} \sin \left(\omega_{0} t\right)$ and $\ddot{x}=\cos \left(\omega_{0} t\right)$, so it is true that $\ddot{x}+\omega_{0}^{2} x=1$. Also $x(0)=0$ and $\dot{x}(0)=0$: so rest initial conditions. Once again the convolution integral has chosen just the right homogeneous solution to produce rest initial conditions.
(c) $t^{2} * t=\int_{0}^{t}(t-\tau)^{2} \tau d \tau=\int_{0}^{t}\left(t^{2} \tau-2 t \tau^{2}+\tau^{3}\right) d \tau=\frac{1}{2} t^{4}-\frac{2}{3} t^{4}+\frac{1}{4} t^{4}=\frac{1}{12} t^{4}$.
$t * t^{2}=\int_{0}^{t}(t-\tau) \tau^{2} d \tau=\int_{0}^{t}\left(t \tau^{2}-\tau^{3}\right) d \tau=\frac{1}{3} t^{4}-\frac{1}{4} t^{4}=\frac{1}{12} t^{4}$.
(d) $t * t=\int_{0}^{t}(t-\tau) \tau d \tau=\int_{0}^{t}\left(t \tau-\tau^{2}\right) d \tau=\frac{1}{2} t^{3}-\frac{1}{3} t^{3}=\frac{1}{6} t^{3}$. Now
$(t * t) * t=\frac{1}{6} \int_{0}^{t}(t-\tau)^{3} \tau d \tau=\frac{1}{6} \int_{0}^{t}\left(t^{3}-3 t^{2} \tau+3 t \tau^{2}-\tau^{3}\right) \tau d \tau=\frac{1}{6}\left(\frac{1}{2}-\frac{3}{3}+\frac{3}{4}-\frac{1}{5}\right) t^{5}$
$=\frac{1}{120} t^{5}$, while $t *(t * t)=\frac{1}{6} \int_{0}^{t}(t-\tau) \tau^{3} d \tau=\frac{1}{6}\left(\frac{1}{4}-\frac{1}{5}\right) t^{5}=\frac{1}{120} t^{5}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

