Undamped Forced Systems

We now look at the pure resonant case for a second-order LTI DE. We will use the language of spring-mass systems in order to interpret the results in physical terms, but in fact the mathematics is the same for any second-order LTI DE for which the coefficient of the first derivative is equal to zero.

The problem is thus to find a particular solution the DE

$$
x^{\prime \prime}+\omega_{0}^{2} x=F_{0} \cos \omega t
$$

The steps, as in the example in the last note, are
Complex replacement: $z^{\prime \prime}+\omega_{0}^{2} z=F_{0} e^{i \omega t}, x=\operatorname{Re}(z)$.
Characteristic polynonial: $p(r)=r^{2}+\omega_{0}^{2} \Rightarrow p(i \omega)=\omega_{0}^{2}-\omega^{2}$.
Exponential Response formula $\Rightarrow z_{p}= \begin{cases}\frac{F_{0} e^{i \omega t}}{p(i \omega)}=\frac{F_{0} e^{i \omega t}}{\omega_{0}^{2}-\omega^{2}} & \text { if } w \neq \omega_{0} \\ \frac{F_{0} t e^{i \omega t}}{p^{\prime}(i \omega)}=\frac{F_{0} t e^{i \omega t}}{2 i \omega} \quad \text { if } \omega=\omega_{0} .\end{cases}$
$\Rightarrow x_{p}= \begin{cases}\frac{F_{0} \cos \omega t}{\omega_{0}^{2}-\omega^{2}} & \text { if } \omega \neq \omega_{0} \\ \frac{F_{0} t \sin \omega_{0} t}{2 \omega_{0}} & \text { if } \omega=\omega_{0} \quad \text { (resonant case). }\end{cases}$

Resonance and amplitude response of the undamped harmonic oscillator

In x_{p} the amplitude $=A=A(\omega)=\left|\frac{F_{0}}{\omega_{0}^{2}-\omega^{2}}\right|$ is a function of ω.
The right plot below shows A as a function of ω. Note, it is similar to the damped amplitude response except the peak is infinitely high. As w gets closer to ω_{0} the amplitude increases.

When $\omega=\omega_{0}$ we have $x_{p}=\frac{F_{0} t \sin \omega_{0} t}{2 \omega_{0}}$. This is called pure resonance (like a swing). The frequency ω_{0} is called the resonant or natural frequency of the system.
In the left plot below notice that the response is oscillatory but not periodic. The amplitude keeps growing in time (caused by the factor of t in x_{p}).

Note carefully the different units and different meanings in the plots below.

The left plot is output vs. time (for a fixed input frequency) and the right plot is output amplitude vs. input frequency.
x and A are in physical units dependent on the system; t is in time; ω is in radians.

Resonant response ($\omega=\omega_{0}$)

Undamped amplitude response

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

