Undamped Forced Systems

We now look at the pure resonant case for a second-order LTI DE. We will use the language of spring-mass systems in order to interpret the results in physical terms, but in fact the mathematics is the same for any second-order LTI DE for which the coefficient of the first derivative is equal to zero.

The problem is thus to find a particular solution the DE

$$x'' + \omega_0^2 x = F_0 \cos \omega t$$

The steps, as in the example in the last note, are Complex replacement: $z'' + \omega_0^2 z = F_0 e^{i\omega t}$, x = Re(z). Characteristic polynonial: $p(r) = r^2 + \omega_0^2 \Rightarrow p(i\omega) = \omega_0^2 - \omega^2$.

Exponential Response formula $\Rightarrow z_p = \begin{cases} \frac{F_0 e^{i\omega t}}{p(i\omega)} = \frac{F_0 e^{i\omega t}}{\omega_0^2 - \omega^2} & \text{if } w \neq \omega_0 \\ \frac{F_0 t e^{i\omega t}}{p'(i\omega)} = \frac{F_0 t e^{i\omega t}}{2i\omega} & \text{if } \omega = \omega_0. \end{cases}$

$$\Rightarrow x_p = \begin{cases} \frac{F_0 \cos \omega t}{\omega_0^2 - \omega^2} & \text{if } \omega \neq \omega_0 \\ \frac{F_0 t \sin \omega_0 t}{2\omega_0} & \text{if } \omega = \omega_0 \quad (\text{resonant case}). \end{cases}$$

Resonance and amplitude response of the undamped harmonic oscillator

In x_p the amplitude = $A = A(\omega) = \left|\frac{F_0}{\omega_0^2 - \omega^2}\right|$ is a function of ω .

The right plot below shows *A* as a function of ω . Note, it is similar to the damped amplitude response except the peak is infinitely high. As *w* gets closer to ω_0 the amplitude increases.

When $\omega = \omega_0$ we have $x_p = \frac{F_0 t \sin \omega_0 t}{2\omega_0}$. This is called *pure resonance* (like a swing). The frequency ω_0 is called the *resonant* or *natural* frequency of the system.

In the left plot below notice that the response is oscillatory but not periodic. The amplitude keeps growing in time (caused by the factor of t in x_p).

Note carefully the different units and different meanings in the plots below.

The left plot is output vs. time (for a fixed input frequency) and the right plot is output amplitude vs. input frequency.

x and *A* are in physical units dependent on the system; *t* is in time; ω is in radians.

Resonant response ($\omega = \omega_0$)

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.