18.03SC Unit 2 Practice Exam and Solutions

Study guide

1. Models. A linear differential equation is one of the form $a_n(t)x^{(n)} + \cdots + a_1(t)\dot{x} + a_0(t)x = q(t)$. The $a_k(t)$ are "coefficients." The left side models a system, q(t) arises from an input signal, and solutions x(t) provide the system response. In this course the system is unchanging—time-invariant—so the coefficients are constant. Then the equation can be written in terms of the characteristic polynomial $p(s) = a_n s^n + \cdots + a_1 s + a_0$ as p(D)x = q(t).

Spring system: $p(s) = ms^2 + bs + k$. System response *x* is position of the mass. If driven directly, $q(t) = F_{ext}(t)$. If driven through the spring, q(t) = ky(t) (y(t) the position of the far end of the spring). If driven through the dashpot, $q(t) = b\dot{y}$ (*y*=position of far end of dashpot).

2. Homogeneous equations. The "mode" e^{rt} solves p(D)x = 0 exactly when p(r) = 0. If r is a double root one needs te^{rt} also (etc.). The general solution is a linear combination of these (Super I). If the coefficients are real and r = a + bi with $b \neq 0$ then $e^{at} \cos(bt)$ and $e^{at} \sin(bt)$ are independent real solutions. If all roots have negative real part then all solutions decay to zero as $t \to \infty$ and are called *transients*. In case $p(s) = ms^2 + bs + k$ with m > 0 and $b, k \geq 0$, the equation is *overdamped* if the roots are real and distinct $(k < b^2/4m)$, underdamped if the roots are not real $(k > b^2/4m)$, and *critically damped* if there is just one (repeated) root $(k = b^2/4m)$. In the underdamped case the general solution is $Ae^{-bt/2m}\cos(\omega_d t - \phi)$ where $\omega_d = \sqrt{\frac{k}{m} - (\frac{b}{2m})^2}$ is the *damped circular frequency*.

3. Linearity. Superposition III: if $p(D)x_1 = q_1(t)$ and $p(D)x_2 = q_2(t)$, then $x = c_1x_1 + c_2x_2$ solves $p(D)x = c_1q_1(t) + c_2q_2(t)$ (c_1, c_2 constant). Consequence (Super II): the general solution to p(D)x = q(t) is $x = x_p + x_h$ where x_p is a solution and x_h is the general solution to p(D)x = 0.

4. Exponential response formula: If $p(r) \neq 0$ then $Ae^{rt}/p(r)$ solves $p(D)x = Ae^{rt}$. If p(r) = 0 but $p'(r) \neq 0$ then $Ate^{rt}/p'(r)$ solves $p(D)x = Ae^{rt}$. (Etc.)

5. Complex replacement: If p(s) has real coefficients then solutions of $p(D)x = Ae^{rt} \cos(\omega t)$ are real parts of solutions of $p(D)z = Ae^{(r+i\omega)t}$.

6. Undetermined coefficients: With $p(s) = a_n s^n + \cdots + a_1 s + a_0$, if $a_0 \neq 0$ then $p(D)x = b_k t^k + \cdots + b_1 t + b_0$ has exactly one polynomial solution, which has degree at most *k*. If a_k is the first nonzero coefficient, then make the substitution $u = x^{(k)}$ and proceed ("reduction of order"). For x_p you can take constants of integration to be zero.

7. Variation of parameters: To solve $p(D)x = f(t)e^{rt}$, try $x = ue^{rt}$. This leads to a different equation for *u* with right hand side f(t).

8. Time invariance: If p(D)x = q(t), then y = x(t - a) solves p(D)y = q(t - a). This lets you convert any sinusoidal term in q(t) to a cosine.

9. Frequency response: An input signal *y* determines q(t) in p(D)x = q(t). With $y = y_{cx} = e^{i\omega t}$, an exponential system response has the form $H(\omega)e^{i\omega t}$ for some complex number $H(\omega)$, calculated using ERF. (If ERF fails then the complex gain is infinite.) Then with $y = A\cos(\omega t)$, $x_p = g\cos(\omega t - \phi)$ where $g = |H(\omega)|$ is the *gain* and $\phi = -\text{Arg}(H(\omega))$ is the phase lag. By time invariance the gain and phase lag are the same for any sinusoidal input signal of circular frequency ω .

Practice Hour Exam

1. The mass and spring constant in a certain mass/spring/dashpot system are known—m = 1, k = 25—but the damping constant *b* is not known. It's observed that for a certain solution x(t) of $\ddot{x} + b\dot{x} + 25x = 0$, $x(\frac{\pi}{6}) = 0$ and $x(\frac{\pi}{2}) = 0$, but x(t) > 0 for $\frac{\pi}{6} < t < \frac{\pi}{2}$.

(a) Is the system underdamped, critically damped, or overdamped?

(**b**) Determine the value of *b*.

2. Find a solution of $3\ddot{x} + 2\dot{x} + x = t^2$.

3. Find a solution to $\ddot{x} + 3\dot{x} + 2x = e^{-t}$.

4. This problem concerns the sinusoidal solution x(t) of $\ddot{x} + 4\dot{x} + 9x = \cos(\omega t)$.

(a) For what value of ω is the amplitude of x(t) maximal?

(b) For what value of ω is the phase lag exactly $\frac{\pi}{4}$?

5. The equation $2\ddot{x} + \dot{x} + x = \dot{y}$ models a certain system in which the input signal is *y* and the system response is *x*. We drive it with a sinusoidal input signal of circular frequency ω . Determine the complex gain as a function of ω , and the gain and phase lag at $\omega = 1$.

6. Find a solution to
$$\frac{d^3x}{dt^3} + x = e^{-t}\cos t$$
.

7. Assume that $\cos t$ and t are both solutions of the equation p(D)x = q(t), for a certain polynomial p(s) and a certain function q(t).

(a) Write down a nonzero solution of the equation p(D)x = 0.

(b) Write down a solution x(t) of p(D)x = q(t) such that x(0) = 2.

(c) Write down a solution of the equation p(D)x = q(t-1).

Solutions

1. (a) Underdamped.

(b) The pseudoperiod is $2(\frac{\pi}{2} - \frac{\pi}{6}) = \frac{2\pi}{3}$. Thus $\omega_d = \frac{2\pi}{2\pi/3} = 3$, $9 = \omega_d^2 = k - (b/2)^2 = 25 - (b/2)^2$, so $(b/2)^2 = 25 - 9 = 16$, b/2 = 4, b = 8.

so a = 1, b + 4a = 0, c + 2b + 6a = 0, b = -4, c = 2: $x_p = t^2 - 4t + 2$.

3. $p(s) = s^2 + 3s + 2$, $p(-1) = (-1)^2 + 3(-1) + 2 = 0$, so ERF fails. p'(s) = 2s + 3, p'(-1) = 1, $x_p = te^{-t}$.

4. (a) The amplitude is $1/|p(i\omega)|$. $p(i\omega) = (k - m\omega^2) + bi\omega = (9 - \omega^2) + 4i\omega$. To maximize the amplitude we can minimize $|p(i\omega)|^2 = (9 - \omega^2)^2 + 16\omega^2$. Now

 $\frac{d}{d\omega}|p(i\omega)|^2 = 2(9-\omega^2)(-2\omega) + 2 \cdot 16\omega \text{ is zero when } \omega = 0 \text{ and when } (9-\omega^2) = 8, \text{ or } \omega = \pm 1.$ Thus $\omega_r = 1.$

(b) The phase lag is the argument of $p(i\omega)$. This is $\frac{\pi}{4}$ when the real and imaginary parts are equal and positive. So $9 - \omega^2 = 4\omega$, or $\omega^2 + 4\omega - 9 = 0$, i.e. $(\omega + 2)^2 - 13$. This is zero when $\omega = -2 \pm \sqrt{13}$. Choose the + for a positive value: $\omega = \sqrt{13} - 2$.

5. By time-invariance, we can suppose that the input signal is $y = A\cos(\omega t)$. Replace y with $y_{cx} = Ae^{i\omega t}$. The equation is then $2\ddot{z} + \dot{z} + z = Ai\omega e^{i\omega t}$. $p(i\omega) = (1 - 2\omega^2) + i\omega$, so by the ERF $z_p = \frac{Ai\omega}{(1 - 2\omega^2) + i\omega}e^{i\omega t}$. So $H(\omega) = \frac{i\omega}{(1 - 2\omega^2) + i\omega}$. With $\omega = 1$, $H(1) = \frac{i}{\sqrt{2}} = \frac{1}{1+i}$, which has magnitude $g(1) = \frac{1}{\sqrt{2}}$. The phase lag is $-\operatorname{Arg}(H(1)) = \frac{\pi}{4}$.

6. This is the real part of $\frac{d^3z}{dt^3} + z = e^{(-1+i)t}$. The characteristic polynomial is $p(s) = s^3 + 1$, and p(-1+i) = 2(1+i) + 1 = 3 + 2i. So $z_p = \frac{e^{(-1+i)t}}{3+2i} = e^{-t}\frac{3-2i}{13}e^{it}$, and $x_p = \text{Re}(z_p) = \frac{1}{2}e^{-t}(2z_p) + 2z_p(z_p) + 2$

 $\frac{1}{13}e^{-t}(3\cos t + 2\sin t)$ (This can also be done using variation of paramters.)

7. (a) By linearity, $p(D)(\cos t - t) = p(D)\cos t - p(D)t = q(t) - q(t) = 0$. In fact $a(\cos t - t)$ will work for any a (except a = 0, since we wanted a nonzero solution).

(b) By linearity, we can add any homogeneous solution and get a new solution. If we start with $x_p = t$, we can add $x_h = 2(\cos t - t)$: $x = 2\cos t - t$.

(c) By time-invariance, x(t-1) will work, for any solution x(t) of p(D)x = q(t). So t-1 and $\cos(t-1)$ work, as does $a \cos(t-1) + (1-a)(t-1)$ for any a.

Actually, LTI implies that if one sinusoidal function of circular frequency 1 is a solution of p(D)x = 0, then any sinusoidal function of circular frequency 1 is too, so there are even more choices of answers to all these questions.

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.