18.03SC Unit 2 Exam Solutions

1. (a) The characteristic polynomial is $p(s)=s^{2}+s+k=\left(s+\frac{1}{2}\right)^{2}+\left(k-\frac{1}{4}\right)$. This has a repeated root when $k=\frac{1}{4}$.
(b) If k is larger, the contents of the square root become negative and the roots become non-real: so underdamped. (Note that this does not require the solution to (a).)
(c) Vanishing twice implies underdamped. The pseudoperiod is 2 (since a damped sinusoid vanishes twice for each period), so $\omega_{d}=\frac{2 \pi}{2}=\pi$. From $p(s)=s^{2}+s+k=$ $\left(s+\frac{1}{2}\right)^{2}+\left(k-\frac{1}{4}\right)$ we find $\omega_{d}=\sqrt{k-\frac{1}{4}}$, so $k=\pi^{2}+\frac{1}{4}$.
2. (a) Variation of parameters: $x=u e^{2 t} . \dot{x}=(\dot{u}+2 u) e^{2 t}$, $\ddot{x}=(\ddot{u}+4 \dot{u}+4 u) e^{2 t}$, so $\ddot{x}+x=$ $(\ddot{u}+4 \dot{u}+5 u) e^{2 t}$, and u must satisfy $\ddot{u}+4 \dot{u}+5 u=5 t$. Undetermined coefficients: $u_{p}=$ $a t+b, \dot{u}_{p}=a, \ddot{u}_{p}=0$, so $4 a+5(a t+b)=5 t, a=1, b=-\frac{4}{5}: u_{p}=t-\frac{4}{5}, x_{p}=\left(t-\frac{4}{5}\right) e^{2 t}$.
(b) The homogeneous equation has general solution $a \cos t+b \sin t$, so the general solution of $\ddot{x}+x=5 t e^{2 t}$ is $x=y+a \cos t+b \sin t . \quad 3=x(0)=y(0)+a=1+a$ so $a=2$. $5=\dot{x}(0)=\dot{y}(0)+b=2+b$ so $b=3: x=y+2 \cos t+3 \sin t$.
3. (a) The complex replacement $\ddot{z}+b \dot{z}+k z=e^{i \omega t}$ has exponential solution $z_{p}=\frac{e^{i \omega t}}{p(i \omega)}$. The amplitude of $\operatorname{Re}\left(z_{p}\right)$ is $\frac{1}{|p(i \omega)|}$, so we find what value of k minimizes $|p(i \omega)| \cdot p(i \omega)=$ $\left(k-\omega^{2}\right)+b i \omega$, so $k=\omega^{2}$ minimizes the absolute value. [This is interesting; the spring constant resulting in largest gain is the one resulting in a system whose natural frequency matches the driving frequency, independent of the damping constant.]
(b) $p(s)=s^{3}-s=s(s-1)(s+1)$, so the modes are $e^{0 t}=1$, e^{t}, and e^{-t}. The general solution is $a e^{-t}+b+c e^{t}$.
4. (a) By time invariance and linearity we can suppose the input signal is $\cos (\omega t)$. The complex input is $y_{\mathrm{cx}}=e^{i \omega t}$, and $\ddot{z}+\dot{z}+6 z=6 e^{i \omega t}$ has exponential solution $z_{p}=\frac{6}{p(i \omega)} e^{i \omega t}=\frac{6}{p(i \omega)} y_{\mathrm{cx}}$, so the complex gain is $H(\omega)=\frac{6}{p(i \omega)}=\frac{6}{\left(6-\omega^{2}\right)+i \omega}$.
(b) $H(2)=\frac{6}{(6-4)+2 i}=\frac{3}{1+i}$, so $g(2)=|H(2)|=\frac{3}{\sqrt{2}}$.
(c) $\phi=-\operatorname{Arg}(H)(\omega)=\operatorname{Arg}(1+i)=\frac{\pi}{4}$.
5. (a) If we write $q(t)=4 \cos (2 t)$, the new input signal is $4 \cos (2 t-1)=q\left(t-\frac{1}{2}\right)$, so by time-invariance, $x=\frac{1}{2}\left(t-\frac{1}{2}\right) \sin \left(2\left(t-\frac{1}{2}\right)\right)$ solves the new equation. Of course once m, b, and k are known, you know the transients and can construct more answers to this part.
(b) By linearity, $x=t \sin (2 t)$.
(c) The form of the solution indicates resonance: so $\pm 2 i$ are roots of the characteristic polynomial, which must thus be $p(s)=m(s-2 i)(s+2 i)=m\left(s^{2}+4\right)$. Thus $b=0$ and $k=4 m$. By the Exponential Response Formula with resonance, $m \ddot{z}+k z=4 e^{2 i t}$ has solution $\frac{4 t}{p^{\prime}(2 i)} e^{2 i t}=\frac{4 t}{4 m i} e^{2 i t}=\frac{t}{m i} e^{2 i t}$, so the original equation has solution $\frac{1}{m} t \sin (2 t)$. Thus $m=2, b=0, k=8$.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

