18.03SC Unit 2 Exam

1. (a) For what value of k is the system represented by $\ddot{x}+\dot{x}+k x=0$ critically damped?
(c) Suppose a solution of $\ddot{x}+\dot{x}+k x=0$ vanishes at $t=1$, and then again for $t=2$ (but not in between). What is k ?
2. (a) Find a solution of $\ddot{x}+x=5 t e^{2 t}$.
(b) Suppose that $y(t)$ is a solution of the same equation, $\ddot{x}+x=5 t e^{2 t}$, such that $y(0)=1 \quad$ [10] and $\dot{y}(0)=2$. (This is probably not the solution you found in (a).) Use $y(t)$ and other functions to write down a solution $x(t)$ such that $x(0)=3$ and $\dot{x}(0)=5$.
3. (a) Consider the equation $\ddot{x}+b \dot{x}+k x=\cos (\omega t)$. We will vary the spring constant but keep b fixed. For what value of k is the amplitude of the sinusoidal solution of $\ddot{x}+b \dot{x}+$ $k x=\cos (\omega t)$ maximal? (Your answer will be a function of ω and may depend upon b as well.)
(b) (Unrelated to the above.) Find the general solution of $\frac{d^{3} x}{d t^{3}}-\frac{d x}{d t}=0$.
4. A certain system has input signal y and system response x related by the differential equation $\ddot{x}+\dot{x}+6 x=6 y$. It is subjected to a sinusoidal input signal.
(a) Calculate the complex gain $H(\omega)$.
(b) Compute the gain at $\omega=2$.
(c) Compute the phase lag at $\omega=2$.
5. Suppose that $\frac{1}{2} t \sin (2 t)$ is a solution to a certain equation $m \ddot{x}+b \dot{x}+k x=4 \cos (2 t)$.
(a) Write down a solution to $m \ddot{x}+b \dot{x}+k x=4 \cos (2 t-1)$.
(b) Write down a solution to $m \ddot{x}+b \dot{x}+k x=8 \cos (2 t)$.
(c) Determine m, b, and k.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

